O polietilenoglicol, graças às suas propriedades sedentas pela água, encontrou uma ampla variedade de usos desde sua criação em 1859. Aqui o produto químico é usado por conservadores em Portsmouth, Inglaterra, para estabilizar os restos de Mary Rose, um navio de guerra construído por Henry VIII e afundado pelos franceses em 1545.
Texto escrito por Sam Kean
Uma molécula usada em anticongelante pode um dia curar medulas espinhais danificadas.
Pesquisas sobre lesões na medula espinhal às vezes parecem fúteis. Durante o século passado, milhões de horas de trabalho e incontáveis milhões de dólares de pesquisa foram despejados no campo – e todo esse esforço produziu exatamente zero tratamentos para danos na medula espinhal. Como observou um neurologista, “seria difícil encontrar qualquer outro ramo da ciência com mais de um século de tal esforço estéril”. Mas na última década, essas perspectivas sombrias se iluminaram consideravelmente, graças a um produto químico simples chamado PEG.
PEG significa polietilenoglicol, um polímero de cadeia longa com uma incrível sede por moléculas de água. Foi criado em 1859 e desde então tem sido usado em uma variedade estonteante de produtos, incluindo creme dental, fumaça artificial e anticongelantes. Talvez o mais famoso seja que os arqueólogos usaram o PEG para proteger a frágil pintura dos guerreiros de terracota da China contra a umidade do ar e preservar os pedaços de madeira de antigos naufrágios. No último caso, os cascos de madeira emergem das profundezas salgadas, muito encharcados, muitas vezes com a consistência de papelão molhado. O PEG estabiliza a madeira e substitui as moléculas de água no interior das células da madeira, o que impede que as tábuas se encolham e se partam quando a madeira seca.
PEG tem usos na medicina também, mais comumente como laxante. Sendo uma molécula sedenta por água, o PEG impede que os intestinos reabsorvam a água nas fezes, o que mantém as fezes moles e pesadas e facilita a passagem.
Mais recentemente, empresas de biotecnologia usaram o PEG para criar anticorpos que combatem doenças. Anticorpos são normalmente produzidos por certos glóbulos brancos, mas essas células não crescem bem fora do corpo, tornando os anticorpos difíceis de produzir em massa. Dois cientistas finalmente contornaram essa limitação na década de 1970, misturando, entre outras coisas, o PEG com as células cancerígenas. César Milstein e Georges Köhler sabiam que as células cancerígenas, embora destrutivas dentro do corpo, crescem muito bem no laboratório. Então eles começaram a procurar maneiras de fundir células produtoras de anticorpos com células cancerígenas para aproveitar as boas características de ambos. Após uma tentativa fracassada de usar vírus, Milstein e Köhler conseguiram criar esses “hibridomas” com o PEG. O polímero parece promover a fusão de células, desidratando e quebrando suas membranas, forçando as células a entrar em contato e permitindo que fiquem juntas. O trabalho de Milstein e Köhler sobre produção de anticorpos lhes rendeu um Prêmio Nobel em 1984 e ajudou a gerar uma indústria multibilionária que produziu tratamentos para a doença de Crohn, artrite reumatoide, vários tipos de câncer e rejeições imunológicas em cirurgias de transplante.
A capacidade do PEG de fundir células também explica por que o polímero se mostra tão promissor no tratamento de danos na medula espinhal. Nervos fora da medula espinhal – que transportam sinais para seus membros e órgãos – podem crescer novamente, ainda que lentamente, depois de sofrerem danos. O tecido nervoso dentro da medula espinhal não cresce novamente após o dano, o que significa que as lesões da medula espinhal geralmente causam paralisia permanente.
Mas o PEG poderia contornar essa limitação. Quando aplicado a células espinhais danificadas, quebra suas membranas e permite que as células acima e abaixo do local da lesão se fundam. Como resultado, os sinais do cérebro – que uma vez se dissiparam no ponto de ruptura – agora podem cruzar o local da lesão e conectar o cérebro e a parte inferior do corpo mais uma vez.
Até agora, o PEG provou ser eficaz no tratamento da paralisia da medula espinhal em uma variedade de mamíferos, incluindo cães. Eu pessoalmente testemunhei a maravilha do PEG em ratos enquanto visitava um laboratório de pesquisa na China. Lá, observei dois alunos de pós-graduação cortarem cirurgicamente a medula espinhal de vários camundongos, o que deveria ter tornado suas patas traseiras inúteis. (Eles cortaram as espinhas no meio das costas.) Mas antes de costurar os ratos, os estudantes esguicharam ali algumas gotas de PEG dissolvido em água, uma solução com uma cor levemente âmbar [alaranjado]. Dois dias depois, esses ratos estavam andando novamente. Não perfeitamente: eles ainda balançavam um pouco. Mas, em comparação com os ratos de controle – que não receberam PEG e que estavam arrastando suas pernas mortas – os ratos PEG fizeram uma recuperação quase milagrosa.
No momento, o PEG continua experimental. O sucesso em animais de laboratório não garante o sucesso em seres humanos, e ninguém sabe até que ponto o PEG – que no laboratório costuma ser aplicado imediatamente após danos na medula espinhal – funcionaria em lesões de longa duração, muitas vezes cobertas de tecido cicatricial. (Cirurgiões talvez pudessem contornar isso fazendo cortes novos que reduzissem as cicatrizes). Mas o PEG e outras substâncias químicas que fundem as células (coletivamente chamadas de fusogênios) mostram uma genuína promessa. Somente nos Estados Unidos, 11.000 pessoas sofrem danos na medula espinhal a cada ano, sem perspectivas de melhora. Depois de um século de tal esforço estéril, vale a pena comemorar um modesto broto de esperança.
Texto escrito por Sam Kean.
Traduzido por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ) do original ‘Chemical Hope’ com autorização oficial dos detentores dos direitos. Revisado por: Kelly Vargas e Lucas Capello.
Original (English) content from Science History Institute (https://www.sciencehistory.org/). Content translated with permission, but portuguese text not reviewed by the original author. Please do not distribute beyond this site without permission. [[Conteúdo original (inglês) do Science History Institute (https://www.sciencehistory.org/) . Conteúdo traduzido com permissão, mas o texto em português não foi revisado pelo autor do original. Por favor, não distribua o conteúdo sem permissão.]]
Nossas sugestões de leitura:
– Síntese de dioxano partindo de etilenoglicol