Autor: Luís Roberto Brudna Holzle

Experimento da Fonte de Amônia

A fonte de amônia é um experimento tradicional que demonstra como o gás amônia se dissolve rapidamente em água. Para isso, foi usado um frasco de vidro contendo amônia gasosa e um tubo de vidro que mergulha em um recipiente com água. À medida que o gás se dissolve, ocorre uma redução na pressão interna do frasco, o que faz com que mais água seja sugada para dentro, intensificando o processo de dissolução.

Para tornar esse fenômeno visível, é usado o indicador fenolftaleína, que fica vermelho em meio alcalino. Quando a amônia começa a se dissolver na água, a solução se torna alcalina, resultando em uma mudança de cor.

O Balão de Neil: Uma Abordagem Inovadora

Inspirados pela solubilidade da amônia, Neil e Martyn desenvolveram um segundo experimento, o balão de Neil, para testar se um balão cheio de amônia poderia flutuar, já que o gás é mais leve que o ar. Após verificarem que o balão flutuava, eles decidiram introduzir uma nova variável: a injeção de água contendo fenolftaleína no balão. Nossa hipótese era que a água absorveria a amônia, causando a queda da pressão interna e o consequente encolhimento do balão.

O experimento foi bem-sucedido. À medida que a amônia se dissolvia na água, o balão encolhia gradualmente, demonstrando de forma visual o processo de dissolução do gás. No entanto, um fenômeno interessante também ocorreu: a dissolução da amônia gera calor, o que fez com que o balão aquecesse durante o experimento.

Veja a demonstração destes experimentos no vídeo abaixo.

.

Uno – Química orgânica (jogo)

Sugestões de regras do jogo:

Se tiver muitos jogadores, o jogo começa com cinco cartas para cada um, mas se tiver poucos jogadores, cada um começa com sete cartas. O objetivo do jogo é ficar sem cartas. Quem inicia o jogo será decidido entre os jogadores. Existem as cartas especiais como a de bloqueio, que pula a vez do próximo jogador, a carta de reverse, que muda o sentido de rotação do jogo, e a volta é invertida. A carta de mudar função serve para mudar a função. Ex: se cair um aldeído, o jogador pode mudar para um ácido carboxílico ou vice-versa.

Carta de mais quatro, porém, ela é especial, pois para ela funcionar da maneira correta, deve-se colocar a carta em cima do nome interior da carta, para que o jogador possa ver apenas a estrutura, sem sua descrição. Então, o jogador que recebeu a jogada é obrigado a responder qual é sua função. Se caso não souber qual é, no caso um fenol, ácido carboxílico, aldeído, etc., deverá comprar mais 4, mas se ele(a) acertar, o jogador seguinte deverá comprar mais 4.

As cartas em si contêm uma estrutura dentro com um nome. Ex: terá um ácido carboxílico com o nome do ácido carboxílico, e fora da carta terá a cor que representa um aldeído, ácido carboxílico, etc.

Este jogo foi adaptado por Matheus Alves e Sandro de Deus, baseado no jogo UNO; para a componente curricular de Instrumentação para o Ensino de Química 1, na Universidade Federal do Pampa.

Clique aqui para baixar o arquivo com as cartas.

Inorgânicos: Desafio Químico

  • Objetivo do Jogo

O objetivo é familiarizar os jogadores e ajudar a reconhecer e entender as diferentes funções inorgânicas, como ácidos, bases, sais e óxidos, além de aprender sobre suas propriedades e aplicações.

  • Cartas do jogo

Cada carta representa uma função inorgânica específica (ácido, base, sal ou óxido). Cada carta deve conter:

  • Nome da Função Inorgânica: Exemplo, “Ácido Clorídrico”.
  • Fórmula Química: Exemplo, “HCl”.
  • Propriedades Características: Exemplo, “Reage com água para formar íons H+ e Cl-“.
  • Exemplos de Uso ou Aplicações: Exemplo, “Usado na indústria de limpeza e na fabricação de plásticos”.

O jogo terá o total de 46 cartas, possuindo diferentes funcionalidades, como:

  • Cartas de Funções Inorgânicas: 16 cartas

Ácidos: 4 cartas (HCl, H2SO4, HNO3, H3PO4);

Bases: 4 cartas (NaOH, KOH, Ca(OH)2, NH4OH);

Sais: 4 cartas (NaCl, KNO3, CaCO3, Na2SO4);

Óxidos: 4 cartas (CO2, SO2, CaO, MgO);

  • Cartas de Propriedades: 21 cartas

pH Ácido: 3 cartas;

pH Básico: 3 cartas;

Solúvel em Água: 3 cartas;

Insolúvel em Água: 3 cartas;

Estado Físico: 3 cartas (sólido, líquido, gasoso);

Reatividade: 3 cartas (alta reatividade, baixa reatividade);

Formação de Sal: 3 cartas;

  • Cartas de Ação: 9 cartas

Troca de Cartas: 3 cartas;

Pule uma Vez: 3 cartas;

Carta Coringa: 3 cartas;

  • Manual de Regras

O jogo pode ser jogado por 2 a 4 jogadores. Na preparação, distribua 5 cartas entre os jogadores. Nas rodadas, os jogadores se revezam para jogar uma carta da sua mão no centro da mesa. 

Cada jogador deve tentar fazer correspondência entre as cartas jogadas com base em critérios pré-determinados. Por exemplo, na correspondência de propriedades, o jogador pode combinar uma carta de ácido com uma carta que descreve sua reação com água, ou na correspondência de exemplos, o jogador pode combinar uma carta que descreve um exemplo de uso de um óxido com uma carta que descreve suas propriedades. 

Os jogadores ganham pontos ao fazer correspondências corretas, com a pontuação determinada pelo número de correspondências corretas feitas em cada rodada, ganha o jogador que terminar suas cartas primeiro.

Abaixo está o design das cartas, sendo a primeira carta o verso que vai em todas as outras cartas.

Clique aqui para baixar o arquivo (PDF) com as cartas.

Texto escrito por Jaíne da Rosa Soares e Cassiane Fonseca Machado como parte da disciplina Instrumentação para o ensino de química 1, na Universidade Federal do Pampa.

Por que culpamos o dióxido de carbono pelas mudanças climáticas, quando o vapor de água é um gás de efeito estufa muito mais abundante?

A água adicional que adicionamos à atmosfera não permanece por tempo suficiente para mudar a temperatura a longo prazo do nosso planeta. No entanto, a água desempenha um papel fundamental como coadjuvante nas mudanças climáticas.

Com toda a atenção dada às emissões de dióxido de carbono (CO2) que aquecem o clima, você pode se surpreender ao saber que o CO2 não é o gás de efeito estufa mais importante que afeta a temperatura da Terra. Essa distinção pertence à água.

Podemos agradecer ao vapor d’água por cerca de metade do “efeito estufa” que mantém o calor do sol dentro da nossa atmosfera. “É o gás de efeito estufa mais importante em nosso sistema climático, devido às suas concentrações relativamente altas,” diz Kerry Emanuel, professor emérito de ciência atmosférica no MIT. “Pode variar de quase nada a até 3% de um volume de ar.”

Compare isso com o CO2, que hoje constitui cerca de 420 partes por milhão da nossa atmosfera—0,04%—e você verá imediatamente por que o vapor d’água é um elemento crucial do nosso sistema climático.

Então, por que nunca ouvimos cientistas do clima soando o alarme sobre nossas “emissões de água”? Não é porque os humanos não colocam água na atmosfera. Mesmo o escape que vem de uma usina a carvão—o exemplo clássico de uma emissão de gás de efeito estufa que aquece o clima—contém quase tanto vapor d’água quanto CO2. É por isso que esse escape forma uma nuvem visível.

Mas o vapor d’água difere de uma maneira crucial de outros gases de efeito estufa como CO2, metano e óxido nitroso. Esses gases de efeito estufa são sempre gases (pelo menos quando estão em nossa atmosfera). A água não é. Ela pode se transformar de gás em líquido em temperaturas e pressões muito comuns na nossa atmosfera, e frequentemente o faz. Quando está mais frio, cai do ar como chuva ou neve; quando está mais quente, evapora e sobe novamente como gás.

“Este processo é tão rápido que, em média, uma molécula de água reside na atmosfera por apenas cerca de duas semanas,” diz Emanuel.

Isso significa que a água extra que colocamos na atmosfera simplesmente não permanece tempo suficiente para alterar o clima; você não precisa se preocupar em aquecer a Terra toda vez que ferve uma chaleira. E realmente não há quantidade de vapor d’água que pudéssemos emitir que mudaria isso. “Se pudéssemos magicamente dobrar a quantidade de vapor d’água na atmosfera, em aproximadamente duas semanas o excesso de água iria chover e nevar de volta para oceanos, geleiras, rios, lagos e águas subterrâneas,” diz Emanuel.

No entanto, o vapor d’água é uma parte importante da história da mudança climática—apenas de uma forma um pouco indireta.

A qualquer temperatura dada, existe um limite superior teórico para a quantidade de vapor d’água que o ar pode conter. Quanto mais quente o ar, mais alto esse limite superior. E embora o ar raramente contenha tanta água quanto poderia—graças à chuva e neve—Emanuel diz que, a longo prazo, temperaturas em ascensão aumentam gradualmente a quantidade média de vapor d’água na atmosfera a qualquer momento.

E claro, as temperaturas hoje estão subindo, graças às emissões humanas de gases de efeito estufa de longa duração como o CO2. O vapor d’água amplifica esse efeito. “Se a temperatura sobe, a quantidade de vapor d’água sobe com ela,” diz Emanuel. “Mas como o vapor d’água é em si mesmo um gás de efeito estufa, o aumento do vapor d’água causa temperaturas ainda mais altas. Nos referimos a esse processo como um feedback positivo, e ele é considerado o feedback positivo mais importante no sistema climático.”

Em resumo, é verdade que o vapor d’água é, de certo modo, o maior gás de efeito estufa envolvido na mudança climática, mas não está no controle. O CO2 ainda é o principal culpado pelo aquecimento global que estamos experimentando hoje. O vapor d’água é apenas uma das características do nosso clima que nossas emissões de CO2 estão desequilibrando—muito além dos níveis estáveis que a humanidade desfrutou por milhares de anos.

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license (CC BY-NC-SA 4.0)

Veja o texto original aqui.

Notas de rodapé

1 NASA Global Climate Change: “Steamy Relationships: How Atmospheric Water Vapor Amplifies Earth’s Greenhouse Effect.” February 8, 2022.

2 Song, Chunshan, et al., “Tri-reforming of Methane over Ni Catalysts for CO2 Conversion to Syngas With Desired H2/CO Ratios Using Flue Gas of Power Plants Without CO2 Separation.” Studies in Surface Science and Catalysis, Volume 153, 2004, doi:10.1016/S0167-2991(04)80270-2.

Gases de efeito estufa não obedecem fronteiras

simulação da nasa

Vivemos em um mundo intricadamente interconectado, onde as ações realizadas em uma parte do globo podem ter repercussões em outra completamente diferente. Este fenômeno é especialmente verdadeiro quando falamos sobre a questão dos gases de efeito estufa e a sua capacidade de alterar o clima global. É essencial entender que a poluição do ar, especialmente os gases de efeito estufa como o dióxido de carbono (CO2) e o metano, não conhece fronteiras.

Quando uma indústria ou uma usina termoelétrica a carvão emite grandes quantidades de CO2, esse gás não fica confinado à região onde foi liberado. Ao contrário, ele se dispersa por toda a atmosfera, tornando-se um problema global. A NASA realizou simulações que ilustram claramente esse fenômeno. Esses estudos mostram como os países que mais poluem – como Estados Unidos, Europa e China – têm um impacto significativo na atmosfera do planeta inteiro.

O CO2, por exemplo, não permanece apenas no país que o produziu. Ele se espalha globalmente, afetando regiões distantes e contribuindo para o aquecimento global e mudanças climáticas que experimentamos hoje.

Veja mais sobre isso neste vídeo

Sobre o CO2: Desmistificando o argumento da concentração baixa na atmosfera

imagem meramente ilustrativa

Em meio às complexas discussões sobre mudanças climáticas, um argumento peculiar frequentemente emerge dos círculos céticos: a aparentemente insignificante concentração de dióxido de carbono (CO2) na atmosfera terrestre. Segundo esta linha de raciocínio, como o CO2 representa apenas cerca de 0,04% da composição atmosférica, seu impacto no clima global seria negligenciável. No entanto, este argumento, apesar de aparentemente lógico à primeira vista, desmorona sob um exame mais detalhado das dinâmicas atmosféricas e dos princípios básicos da ciência climática.

Para entender por que a baixa concentração de CO2 não diminui sua importância climática, é útil comparar a atmosfera terrestre a uma xícara de café. Imagine por um momento que você está saboreando sua xícara matinal. A grande parte desse líquido é água, similar à forma como o nitrogênio (78%) e o oxigênio (21%) dominam a composição da atmosfera terrestre. Assim como a cafeína, presente em pequenas quantidades no café, tem um efeito poderoso sobre o corpo humano, o CO2, mesmo em sua concentração relativamente baixa, exerce um impacto profundo sobre o sistema climático da Terra.

A capacidade do CO2 de reter calor na atmosfera — conhecida como efeito estufa — é o que o diferencia de gases majoritários como o nitrogênio e o oxigênio, que não possuem essa propriedade. Este efeito estufa é crucial para manter nosso planeta habitável, mas o aumento da concentração de CO2, principalmente devido às atividades humanas desde a Revolução Industrial, intensificou esse fenômeno, levando ao aquecimento global e às mudanças climáticas.

Desde o início da Revolução Industrial, a concentração atmosférica de CO2 aumentou cerca de 50%, um salto que, embora possa parecer modesto em termos percentuais, tem consequências drásticas para o equilíbrio climático do planeta. Além do CO2, outros gases de efeito estufa, como o metano, também viram suas concentrações atmosféricas aumentarem significativamente, ampliando ainda mais o impacto dos humanos sobre o clima global.

A analogia do café nos ajuda a entender que a potência de um componente não é determinada pela sua abundância, mas pela sua natureza e pelo efeito que exerce no sistema como um todo. Assim, mesmo que o CO2 constitua uma fração minúscula da atmosfera, seu papel no sistema climático é tão crucial quanto a cafeína é para a experiência de beber café.

Esse entendimento desfaz o mito da insignificância do CO2 com base em sua baixa concentração atmosférica e ressalta a importância de abordagens científicas sólidas e holísticas para compreender as mudanças climáticas. Confrontar e desmistificar argumentos mal fundamentados é essencial para promover uma conscientização mais profunda sobre a crise climática e fomentar ações efetivas em resposta a ela.

Veja estas informações no vídeo abaixo