O canal NileRed mostra no vídeo abaixo como realizar a síntese de fluoresceína. É possível também obter a fluoresceína pela extração do material existente em algumas canetas marca-texto.
Para esta síntese foram usados anidrido ftálico e resorcinol; com a adição de algumas gotas de ácido sulfúrico concentrado para catalisar o processo. O aquecimento da mistura até próximo de 200 °C já é o suficiente para iniciar a reação – com a visível produção de uma cor vermelha intensa; indicando a formação de fluoresceína.
O passo seguinte é isolar e purificar a fluoresceína resultante. A fluoresceína foi separada pela adição de éter etílico e água. Os passos desta lavagem são mais facilmente realizados em um funil de separação, com objetivo de remover o ácido sulfúrico e o resorcinol que não reagiu. Na fração contendo fluoresceína e éter etílico foi então adicionada uma porção de peneira molecular para remover qualquer água que tenha permanecido nesta fase. O éter foi posteriormente extraído e recuperado por destilação.
Do processo de purificação sobra um produto sólido com cor vermelho escura que passa para a característica cor esverdeada ao ser adicionado em água contendo um pouco de hidróxido de sódio.
No vídeo abaixo estão todos os detalhes das quantidades de reagentes, do procedimento de reação e purificação, algumas considerações sobre o mecanismo de reação, e demonstrações do intenso brilho da fluoresceína quando iluminada sob luz normal e sob luz ultravioleta.
É comum ter aquela curiosidade de saber o que acontece quando colocamos alguma coisa em um ácido concentrado. Raramente é possível satisfazer essa curiosidade – ácidos são relativamente caros e o manuseio deve ser cuidadoso; provavelmente o desperdício do reagente não será bem visto.
Uma coletânea [aviso: algumas imagens podem ser desagradáveis]
Em alguns vídeos a miniatura (thumbnail) está com a descrição de ‘ácido estomacal’ (stomach acid) mas o experimento foi realizado com ácido clorídrico concentrado. O ácido estomacal tem uma concentração relativamente baixa de HCl, sendo em torno de 0,1 mol.L-1 a 0,05 mol.L-1; enquanto que o utilizado no vídeo é em torno de 10 mol.L-1.
O ácido nítrico dito fumegante é uma solução aquosa com concentração acima de 86%, e a alta concentração é de interesse em processos nos quais a intensa nitração de um composto orgânico é desejada. E, dependendo do composto, a nitração pode significar alto poder explosivo.
O canal do Youtube, NileRed, mostra o procedimento para obtenção do ácido nítrico fumegante partindo de 110 gramas de nitrato de potássio (KNO3) e 60 mililitros de ácido sulfúrico concentrado.
O roteiro do procedimento pode ser visto com mais detalhes no vídeo abaixo. E o rendimento informado foi de 30 mililitros de ácido nítrico concentrado.
O produto final é testado em moedas de cobre, que reagem lentamente em ácido concentrado pelo efeito da passivação do metal. E a diluição com água apressa significativamente o processo.
No final do vídeo o NileRed derrama algumas gotas do ácido sobre luvas de borracha (nitrílica) e luvas de látex para alertar que elas não são adequadas neste caso.
Atenção!Somente realize este experimento se você tiver conhecimento técnico, acesso a equipamentos de proteção, vidraria adequada e sistema de ventilação eficientes. Além disso a posse e manipulação de ácido nítrico nesta concentração pode gerar suspeita de uso na síntese de algum tipo de material explosivo. Verifique primeiro se o local tem autorização para a realização deste tipo de procedimento.
.
Texto e legenda escritos por [] – Professor Doutor na Universidade Federal do Pampa ( luisholzle@unipampa.edu.br )
Separar totalmente álcool etílico (etanol) da água pela destilação não é um processo tão simples quanto poderia parecer. O processo simples de destilação chega a uma pureza de no máximo 95,6% de álcool etílico (e o restante água); isto porque neste ponto ocorre a formação de um azeótropo de mínimo, no qual esta mistura tem um ponto de ebulição menor do que os componentes puros.
Então, como sair desse “nó”? O canal NileRed mostra no vídeo abaixo um dos métodos possíveis para resolver isso. Ele parte de um etanol a 95% (adquirido comercialmente) e testa a concentração usando um densímetro. E então adiciona uma boa quantidade de peneira molecular adequada para esta função.
O inconveniente do uso de peneira molecular na secagem do etanol é que pode resultar em uma grande quantidade de pó deste material em suspensão no solvente. E o NileRed opta por destilar para remover o pó de peneira molecular e qualquer agente denaturante que tenha sido adicionado ao etanol comercial.
A evaporação de um líquido é um processo que demanda energia. E isso pode ser medido em laboratório e normalmente é caracterizado como entalpia de vaporização. Então diferentes líquidos têm diferentes entalpias de vaporização.
No caso da demonstração feita pela equipe do Periodic Videos a evaporação do éter (éter etílico, etoxietano ou éter dietílico) foi forçada pela passagem de nitrogênio (na fase gasosa) pelo líquido. Enquanto evaporava, o éter procurava obter do ambiente a energia necessária para essa vaporização, o que causou um considerável abaixamento de temperatura do tubo de ensaio. A temperatura caiu tanto que foi possível congelar água borrifada nas paredes externas do tubo.
Porque usar éter?
O motivo principal é por ele ter um ponto de ebulição bastante baixo, em torno de 35°C; e também por ser um solvente normalmente disponível em laboratórios de pesquisa.
O experimento foi também filmado com uma câmera sensível ao calor, e assim foi possível observar os detalhes da mudança de temperatura.
O vídeo possui legendas em português. Clique no botão CC para ativar a legenda.
Efeito semelhante pode ser percebido quando colocamos álcool etílico (álcool comum) na palma da mão e assopramos. O álcool vai absorver calor da pele ao evaporar e percebemos isso com uma sensação de gelado.