Autor: Luís Roberto Brudna Holzle

Bunsen e seu bico

queimador de bunsen sobre bancada de laboratório
No dia 31 de março de 1811 nascia o químico alemão Robert Wilhelm Eberhard von Bunsen, mais lembrado pelo seu último sobrenome – Bunsen – que batiza o famoso queimador, muito utilizado pelos químicos e estudantes.
Martyn Poliakoff lembrou dos 200 anos do aniversário de Bunsen em 2011, com um vídeo que explica o funcionamento do queimador ou bico de Bunsen. E em como podemos alterar a cor da chama pela regulagem da entrada de oxigênio pela pequena abertura existente na base do bico.
Um invento simples e engenhoso, que merece todo reconhecimento e homenagem.
Martyn conta ainda uma de suas famosas histórias. Veja no vídeo abaixo.
Com legendas em português (ative as legendas no vídeo).

.

Álcool radioativo

rótulo de bebida alcoólica
Na indústria de bebidas, em alguns países, existe a preocupação de saber se o álcool presente no produto tem a sua origem em plantas ou é proveniente de algum processo industrial que parte do petróleo.

Uma forma de testar isso é sabendo que o etanol proveniente de plantas é levemente radioativo – por causa do isótopo carbono 14 que está naturalmente presente nos seres vivos.

Então, se contém álcool com um pouco de carbono 14 em sua estrutura, é uma bebida feita a partir de plantas, e não do petróleo.

Veja mais informações no vídeo abaixo.
Vídeo com legendas em português.


.

Quiralidade como uma luva

mão sobre quadro branco
Esta imagem permite fazer uma analogia e imaginar como funciona a quiralidade em um composto químico. Usando como exemplo uma mão, vemos que se desenharmos uma mão esquerda em um quadro branco e tentarmos sobrepor uma mão direta sobre a imagem, não ocorrerá um encaixe adequado do desenho com a mão. O mesmo pode ser notado quando alguém tentar apertar a mão direita de uma pessoa usando a mão esquerda; ou tenta utilizar uma luva trocada.
Tal fenômeno existe também na química, pois algumas estruturas químicas inicialmente pareceriam ter a mesma função, por terem os mesmos átomos. Na verdade apresentam atividades diferentes por terem tais átomos ligados em posições que os diferenciam; da mesma forma como uma mão direita é diferente de uma mão esquerda – não pela existência dos dedos, mas pela posição destes.
Digamos, por exemplo, que a mão desenhada no quadro fosse uma fechadura que só é ativada com a chave certa; e neste exemplo somente a mão esquerda seria a “chave” certa para ativar esta “fechadura”. Analogia semelhante pode ser aplicada na função biológica de certas moléculas, que agem somente quando existe um “encaixe” adequado. E# somente a molécula com a “estrutura certa” poderia servir na posição certa.

Imagem em licença Creative Commons (by-nc-sa).
by nc sa

Texto escrito por Lígia Bartmer.

Perdendo alguns dedos em uma reação química

martyn levanta a mão mostrando como o colega perdeu os dedos
Professor Martyn Poliakoff conta como um colega perdeu alguns dedos da mão em um acidente no laboratório. E em seguida demonstra uma reação que gera o perigoso composto.

O procedimento:
Em uma proveta coloque uma solução aquosa de dicromato de potássio, um pouco de ácido sulfúrico; então adicione cuidadosamente um pouco de éter etílico.
O éter permanecerá acima da camada aquosa, permitindo que um pouco de peróxido de hidrogênio seja adicionado, resultando em uma reação que prossegue ao fundo da proveta.
O azul escuro é decorrente da presença de CrO5, um composto estabilizado em éter.

Não tente repetir o experimento sem conhecimento detalhado das concentrações, quantidades e procedimentos de segurança necessários neste caso.

Vídeo com legendas em português.

.

Minerais em resíduos radioativos

microscopia de cancrinita
A pesquisa sobre energia nuclear dedica uma boa dose de esforços no entendimento da estabilidade físico-química e segurança dos resíduos ainda radioativos, resultantes da atividade de geração de energia por meio de um reator nuclear.
Nos EUA um dos orgãos que trabalha na área é o Pacific Northwest National Laboratory (PNNL), e uma das pesquisas investiga a formação de depósitos minerais em resíduos radioativos de natureza sólida ou líquida.
Resíduos líquidos podem apresentar formação de mineralizações bem características, como é o caso do mineral chamado de cancrinita, originado quando os compostos solúveis aluminato de sódio, silicato, carbonato e nitrato precipitam.
Nos tanques de resíduo esta cancrinita foi identificado como um capturador de íons nitrato – normalmente solúveis em água e que podem escapar dos resíduos indo parar em águas subterrâneas. Tal captura é de interesse dos pesquisadores, pois evitaria a mobilidade do material radioativo, minimizando o risco de contaminação ambiental durante o longuíssimo prazo pelo qual o resíduo radioativo deve ser estocado.

Os membros do time do PNNL, responsáveis pela pesquisa, são: Paul MacFarlan, Edgar Buck, Bruce McNamara e Cal Delegard.

O material foi coletado dos resíduos estocados no sítio de Hanford, sudeste do estado de Washington, gerados na época em que se produzia plutônio.

Provavelmente a imagem foi obtida por meio de uma microscopia eletrônica de varredura; e neste caso as cores da fotografia são usadas apenas para diferenciar as diferentes estruturas visíveis no caso.

Os resultados da pesquisa foram publicados em 2004, no ‘Environmental Science & Technology’, em artigo entitulado ‘Precipitation of Nitrate−Cancrinite in Hanford Tank Sludge’ (DOI: 10.1021/es034943i)

Imagem em licença Creative Commons (by-nc-sa 2.0), via PNNL – Pacific Northwest National Laboratory.

Texto escrito e adaptado por Prof. Dr. Luís Roberto Brudna Holzle.
Imagem encontrada por Lígia Bartmer.

Gases contra incêndios

professor martyn ao lado de cilíndros vermelhos
Cilindros contendo uma mistura dos gases nitrogênio, argônio e gás carbônico (CO2) compõem o sistema de segurança contra incêndios, que protege o acervo de raridades da Royal Society of Chemistry (Sociedade Real de Química).

Em caso de incêndio o sistema é ativado liberando a mistura de gases nas salas protegidas. A presença do gás desloca o oxigênio para fora do ambiente. Como nitrogênio, argônio e CO2 não participam da queima, o incêndio será extinto em poucos segundos.

O mesmo deslocamento do oxigênio para fora das salas poderia causar o sufocamento das pessoas que ainda estivessem nas salas protegidas; e portando por uma questão de segurança a ativação só é feita em caso de um incêndio de grandes proporções.

Veja mais detalhes no vídeo abaixo.
Com legendas em português.

 

.