Categoria: Ambiental

Vídeo: Visualizando as emissões de metano conforme elas acontecem

Os pesquisadores desenvolveram uma técnica para filmar o metano – um poderoso gás de efeito estufa – conforme ele é liberado na atmosfera. A abordagem usa imagens infravermelhas, transformando algo que geralmente está além da capacidade do olho humano em clipes de vídeo onde o metano é facilmente visualizado.

Autor: Robert Mcsweeney

A nova abordagem pode ajudar a superar alguns dos desafios das formas tradicionais de monitoramento das emissões de metano, dizem os pesquisadores.

Você pode ver a técnica em ação no clipe (ligeiramente granulado) abaixo. As cores roxa e verde mostram metano escapando de uma abertura na lateral de um celeiro. O celeiro em questão está abrigando 18 produtores individuais prolíficos de metano – também conhecido como um pequeno rebanho de vacas.

Visualização das emissões de metano (mostradas em roxo e verde) da ventilação no celeiro das vacas. Fonte: Gålfalk et al. (2015)

Com cerca de 25 vezes o poder de aprisionamento de calor do dióxido de carbono, o metano é um gás de efeito estufa que tem uma grande força. É produzido e emitido para a atmosfera por uma série de fontes naturais, como pântanos, bem como por atividades humanas, incluindo a queima de combustíveis fósseis, aterros sanitários, arrozais e criação de gado.

Os métodos de medição das emissões de metano vão desde a pequena escala – usando câmaras de metano – até os satélites. Ambos têm suas desvantagens. As câmaras de metano são pequenas caixas colocadas no solo para medir quanto metano está sendo liberado. Mas eles cobrem apenas uma pequena área (até um metro quadrado, por exemplo), então os cientistas precisam fazer muitas medições para analisar uma paisagem inteira. As medições de satélite podem cobrir grandes áreas, mas não podem identificar pontos específicos de onde o metano está vindo.

Os cientistas também começaram a usar drones para medir as emissões de metano, como você pode assistir neste clipe da BBC News que mostra um aterro sanitário.

A técnica de imagem, descrita em um artigo na Nature Climate Change, abre uma nova oportunidade para superar algumas dessas limitações. O autor principal, Dr. Magnus Gålfalk, professor sênior da Linköping University na Suécia, disse ao Carbon Brief:

  • É uma maneira eficiente de localizar fontes de emissão de metano, já que uma região inteira é fotografada ao mesmo tempo, com alta resolução espacial.

As medições podem ser feitas do solo ou de várias centenas de metros no ar usando um helicóptero, diz o artigo científico.

Entender exatamente como o metano sai de onde é produzido para a atmosfera é crucial para ser capaz de modelá-lo com precisão em simulações de computador, diz o Dr. Vincent Gauci, professor sênior em sistemas terrestres e ciência de ecossistemas na Open University. Ele disse ao Carbon Brief:

  • É vital que entendamos as fontes de metano e como essas fontes respondem às mudanças.

Gauci não estava envolvido no estudo, mas como ele lidera a Methane Network em nome do Conselho de Recursos Ambientais Naturais, ele está muito animado com as possibilidades oferecidas pelo registro do metano em imagens.

  • Criticamente, mais do que apenas ver, eles são capazes de quantificar, o que é muito legal.

O vídeo abaixo mostra outra visualização das emissões de metano – desta vez simplesmente de uma liberação controlada de gás na frente do laboratório dos pesquisadores.

Visualização da liberação controlada de metano (mostrado em roxo) no gramado fora do laboratório. Fonte: Gålfalk et al. (2015)

Gålfalk, M. et al. (2015) Tornando o metano visível, Nature Climate Change, doi: 10.1038 / nclimate2877

Texto traduzido por Prof. Dr. Luís Roberto Brudna Holzle – Universidade Federal do Pampa (Bagé) – Curso Química Licenciatura.

Texto original em: Video: Visualising methane emissions as they happen

Catalisador aprimorado para eletro-redução de CO2

A reação eletrocatalítica de redução de dióxido de carbono (CO2RR) pode ser usada para transformar o gás de efeito estufa CO2 em (C2+) combustíveis multicarbono úteis e matérias-primas químicas, por exemplo, etileno ou etanol. No entanto, é um desafio a produção seletiva desses produtos desejados em altos níveis de corrente. Eletrocatalisadores baseados em cobre ou suas ligas geralmente fornecem seletividade moderada, mas têm problemas com sua estabilidade a longo prazo, especialmente em eletrólitos altamente alcalinos.

Hongjie Dai, Universidade de Stanford, CA, EUA, e colegas desenvolveram um eletrocatalisador simples de  cobre (Cu) eletrodepositado em uma camada de difusão de gás porosa hidrofóbica (GDL), que pode ser usado para a redução estável e seletiva de dióxido de carbono para produtos C2+ em eletrólitos quase neutros. A equipe usou um GDL que consiste em uma camada de fibra de carbono e uma camada microporosa hidrofóbica. A camada de fibra de carbono foi temporariamente coberta e o cobre eletrodepositado na lateral da camada microporosa hidrofóbica.O gás CO2 pode ser transportado com eficiência através das camadas de carbono em direção à camada de cobre cataliticamente ativa. A equipe construiu uma célula de fluxo de dois eletrodos usando um cátodo Cu/GDL em um católito KCl e um ânodo à base de hidróxidos de níquel-ferro em um anólito KOH. Eles descobriram que o sistema fornece excelente seletividade para a formação de produtos C2+, bem como operação estável em altas densidades de corrente.

exto traduzido por Prof. Dr. Luís Roberto Brudna Holzle ( luisholzle@unipampa.edu.br ). A tradução do original ‘Improved Catalyst for CO2 Electro-Reduction’ foi gentilmente autorizada pelos detentores dos direitos (Wiley-VCH GmbH – ChemistryViews.org).

Content translated with permission, but portuguese text not reviewed by the original author. Please do not distribute beyond this site without permission. Conteúdo traduzido com permissão, mas o texto em português não foi revisado pelo autor do original. Por favor, não distribua o conteúdo sem permissão.

  • Autor: ChemistryViews.org
  • Publicado: 28 fevereiro 2021
  • Direito autoral: Wiley-VCH GmbH
  • Sociedades associadas: American Chemical Society (ACS), USA

Dica:

Dióxido de carbono – reação e aquecimento global

Novo estudo científico sugere taxa de acidificação dos oceanos sem paralelo nos últimos 300 milhões de anos.

Os oceanos do mundo podem estar se acidificando 10 vezes mais rápido do que em qualquer momento durante os últimos 300 milhões de anos, de acordo com novas pesquisas. E se a história geológica serve de referência, isso é uma má notícia para as espécies marinhas.

Os oceanos podem absorver o excesso de dióxido de carbono da atmosfera. Um efeito colateral é que a água do mar, que é naturalmente ligeiramente alcalina, torna-se menos alcalina e mais ácida – um processo chamado acidificação do oceano.

Os cientistas estão preocupados até mesmo com pequenas mudanças na acidez do oceano, pois isso pode afetar a forma como as criaturas marinhas desenvolvem suas conchas, o que pode ser crucial para sua sobrevivência.

Neste novo estudo, publicado na revista Science, os pesquisadores procuraram evidências de acidificação dos oceanos no passado, investigando através de centenas de estudos existentes sobre oceanos ao longo da história geológica.

Eles descobriram que nos últimos 300 milhões de anos a acidificação dos oceanos nunca aconteceu tão rápido como está acontecendo agora.

O único período que se aproxima das atuais taxas de acidificação é o Máximo Térmico Paleo-Eoceno (PETM), um período turbulento da história do clima há cerca de 56 milhões de anos, quando grandes quantidades de carbono foram naturalmente liberadas na atmosfera ao longo de algumas dezenas de milhares de anos. Na época, as mudanças no clima e no oceano foram acompanhadas pela extinção de muitas espécies marinhas.

Ao longo do século passado, os níveis de dióxido de carbono na atmosfera aumentaram quase um terço. Os oceanos atualmente absorvem cerca de um quarto do dióxido de carbono atualmente liberado pela atividade humana.

Isso fez com que o pH da água do mar (uma medida de acidez – pH mais baixo significa mais ácido) diminuísse em 0,1. Isso é cerca de 10 vezes mais rápido do que a acidificação durante o PETM.

Os cientistas também sugerem que estamos liberando carbono muito mais rápido do que o carbono foi liberado durante o PETM. O coautor do estudo, Professor Andy Ridgwell, da Universidade de Bristol, diz:

“O registro geológico sugere que a acidificação atual é potencialmente sem paralelo em pelo menos 300 milhões de anos de história da Terra e levanta a possibilidade de estarmos entrando em um território desconhecido de mudança do ecossistema marinho. ”

Uma vez que as projeções dos modelos climáticos sugerem que a acidificação dos oceanos pode se tornar mais severa no final do século, é improvável que qualquer mudança passada na acidificação possa corresponder ao que veremos no futuro. Ridgewell diz:

“Embora existam semelhanças, nada nos últimos 300 milhões de anos se compara às taxas de projeções futuras em termos de interrupção da química do carbonato do oceano – uma consequência da rapidez sem precedentes da liberação de CO2 que ocorre atualmente.”

Essa taxa de mudança sem precedentes na química da água do mar pode afetar algumas espécies marinhas importantes. O professor Bärbel Hönisch, paleoceanógrafo do Observatório Terrestre Lamont-Doherty da Universidade de Columbia e principal autor do estudo explica:

“O que estamos fazendo hoje realmente se destaca. Sabemos que a vida durante os eventos anteriores de acidificação dos oceanos não foi eliminada – novas espécies evoluíram para substituir aquelas que morreram. Mas se as emissões industriais de carbono continuarem no ritmo atual, podemos perder organismos com os quais nos preocupamos – recifes de coral, ostras, salmão. ”

As conclusões alcançadas nesta pesquisa ecoam as descobertas de um estudo recente combinando observações com modelagem de computador que também rotulou as mudanças de acidez oceânicas causadas pelo homem como ‘sem precedentes’.

O vídeo abaixo mostra como a acidez do oceano mudou desde a revolução industrial e como se projeta que ela mudará no futuro:

A animação (vídeo acima) mostra como a saturação de aragonita (uma medida da acidez do oceano) na superfície do oceano deve diminuir no final do século 21, à medida que o acúmulo de dióxido de carbono produzido pelo homem na atmosfera continua a aumentar. Fonte: Tobias Friedrich, SOEST Hawaii.


Texto traduzido por Prof. Dr. Luís Roberto Brudna Holzle – Universidade Federal do Pampa (Bagé) – Curso Química Licenciatura.

Texto original em: New scientific study suggests ocean acidification rate unparalleled over last 300m years (CarbonBrief.Org)

Estudo de emissões de metano em grandes cidades

O metano é um potente gás de efeito estufa e pode ser liberado por fontes humanas e naturais. As grandes cidades emitem quantidades significativas de metano, mas em muitos casos as fontes exatas de emissão são desconhecidas. As principais fontes de emissões de metano nas cidades podem incluir sistemas de aquecimento, aterros, águas residuais e transporte rodoviário. Mapear e quantificar precisamente essas fontes para uma cidade específica pode ajudar a reduzir as emissões de metano.

Sara M. Defratyka, da Université Paris Saclay, Gif-sur-Yvette, França, e colegas realizaram medições móveis de metano e suas fontes, em toda Paris. Os pesquisadores realizaram pesquisas no nível da rua durante 17 dias em Paris de setembro de 2018 a março de 2019. A equipe usou instrumentos montados em carros usando espectroscopia por cavidade ressonante tipo ring-down (cavity ring-down spectroscopy, CRDS), com entradas de ar situadas no teto do carro e em equipamentos portáteis para medições em caminhadas para detectar metano e suas prováveis ​​fontes com base na composição isotópica do metano. A equipe cobriu 30% de toda a malha rodoviária de Paris.

Um total de 90 vazamentos potenciais de metano foram detectados em Paris. 63% desses vazamentos vieram de redes de distribuição de gás natural, 33% de redes de esgoto e 4% de fornos de aquecimento de edifícios. Com base em suas descobertas, os pesquisadores estimam que a taxa total de emissão de metano em Paris é de pelo menos 190 toneladas por ano. O número real é provavelmente mais alto porque o método não relata fontes móveis de metano do transporte rodoviário, como os ônibus que usam gás natural ou biogás como combustível. As descobertas da equipe sugerem que a rede de distribuição de gás natural, o sistema de esgoto e os fornos podem ser alvos promissores para os esforços de redução do metano.

Mapping Urban Methane Sources in Paris, France,
Sara M. Defratyka, Jean-Daniel Paris, Camille Yver-Kwok, Julianne M. Fernandez, Piotr Korben, Philippe Bousquet,
Environ. Sci. Technol. 2021.
https://doi.org/10.1021/acs.est.1c00859

Texto traduzido por Prof. Dr. Luís Roberto Brudna Holzle ( luisholzle@unipampa.edu.br ). A tradução do original ‘Methane Emissions in Large Cities Studied’ foi gentilmente autorizada pelos detentores dos direitos (Wiley-VCH GmbH – ChemistryViews.org).

Content translated with permission, but portuguese text not reviewed by the original author. Please do not distribute beyond this site without permission. Conteúdo traduzido com permissão, mas o texto em português não foi revisado pelo autor do original. Por favor, não distribua o conteúdo sem permissão.

Autor: ChemistryViews.org
Publicado: 25 junho 2021
Copyright: Wiley-VCH GmbH
Fonte/ Editor: Environmental Science & Technology/ACS Publications
Associated Societies: American Chemical Society (ACS), USA


Dica de leitura:

Explosão do metano em câmera lenta

Metano – sem cheiro

A química sustentável

A química verde é uma filosofia que visa reduzir o uso de produtos químicos tóxicos e a produção de resíduos em processos industriais. Ela espalhou sua missão de reduzir o impacto da indústria no meio ambiente em todo o setor industrial, governo e salas de aula.

Filosofia recentemente introduzida na indústria química, a química verde promove o cuidadoso projeto de processos de fabricação de produtos químicos para reduzir o uso de componentes tóxicos e minimizar o desperdício e o uso de energia. As práticas sustentáveis ​​e mais benignas que seguem os princípios da química verde encontraram apoio na indústria e no governo e estão sendo pesquisadas cada vez mais por universidades e agências governamentais em todo o mundo.

Quando o ibuprofeno, o analgésico popular que remedia dores de cabeça, rigidez muscular e febres, foi fabricado pela primeira vez na década de 1960, gerou mais resíduos do que o medicamento. Os químicos faziam ibuprofeno adicionando um excesso de tricloreto de alumínio ao isobutil-benzeno e forçando uma reação de seis etapas com solventes e agentes de separação. Embora o método certamente tenha sintetizado o medicamento, era altamente ineficiente e produzia subprodutos indesejados em cada etapa do processo: uma produção anual de 13,6 milhões de quilogramas de ibuprofeno gerava 20,4 milhões de quilogramas de resíduos, a maioria sendo desperdiçada.

Mas no início dos anos 90, o ibuprofeno sofreu uma transformação. Usando catalisadores em vez de reagentes em excesso para impulsionar as reações, os químicos cortaram pela metade o número de estágios no processo de fabricação do ibuprofeno e eliminaram do processo o tetracloreto de carbono, um solvente tóxico. No novo processo, a economia de átomos – a porcentagem de matérias-primas e reagentes usados ​​na síntese que termina no produto final – oscilava entre 80% e 99%. Esses materiais e reagentes que não acabaram no produto final, como o ácido acético, podem ser recuperados ou reciclados. A reação renovada não só foi boa para os negócios (na medida em que reduziu os custos de limpeza e minimizou o consumo de matérias-primas), foi boa para o meio ambiente.

Mais recentemente, um novo tipo de química – a química verde – está tomando conta da academia, da indústria e do governo.

Não é preciso ir muito longe no passado para encontrar exemplos de produtos químicos e processos químicos que tiveram um impacto negativo na saúde humana e no meio ambiente. Mas, mais recentemente, um novo tipo de química – a química verde – está tomando conta da academia, da indústria e do governo. A química verde repensa o design de processos químicos e oferece benefícios ambientais, reduzindo o desperdício, eliminando tratamentos químicos dispendiosos e reduzindo o uso de energia e recursos. De acordo com a Sociedade Americana de Química [American Chemical Society (ACS)], essa revolução química estimula a criatividade e inventividade dos cientistas, ao mesmo tempo em que aumenta o desempenho e o valor de produtos químicos e materiais.

Inicia na indústria, termina no Nobel
A química verde tornou-se moda apenas nas duas últimas décadas, mas suas origens remontam à indústria dos anos 50. Em 1956, químicos do departamento petroquímico da DuPont em Wilmington, Delaware, descobriram que a passagem de propeno sobre um catalisador de molibdênio sobre alumínio produzia uma mistura de propeno, eteno e 1-buteno. Outros químicos descobriram resultados semelhantes quando combinaram olefinas (alcenos) com outros catalisadores de molibdênio. Os produtos foram o resultado da quebra e reconstrução das ligações duplas nos alcenos. O carbono da ligação dupla de um alceno trocava de lugar com um carbono da ligação dupla do outro alceno. Mas os químicos não tinham um mecanismo para explicar o que estava acontecendo.

Várias teorias foram propostas durante os 15 anos seguintes, mas foi somente em 1971 que Yves Chauvin, do Instituto Francês do Petróleo, juntamente com o estudante Jean-Louis Hérisson, identificou o processo: um metal-carbeno estava desencadeando a reação. Chauvin batizou de dança molecular, na qual um parceiro era expulso por outro. Vinte anos depois, Richard Schrock, do Massachusetts Institute of Technology, descobriu quais metais poderiam ser usados ​​como catalisadores. Um grupo de catalisadores de molibdênio foi particularmente efetivo em rearranjar as ligações duplas dos compostos. Mas estes eram altamente reativos e sensíveis ao oxigênio e à umidade. Eles estavam longe de serem perfeitos. Em 1992, Robert Grubbs, do Instituto de Tecnologia da Califórnia, descobriu um catalisador de rutênio que era estável ao ar e mais seletivo que os catalisadores de Schrock.

Juntas, essas contribuições dos químicos explicaram e desenvolveram a reação de metátese de olefinas, criando uma nova ferramenta para encurtar a rota até uma molécula desejada e reduzir o número de subprodutos indesejados e muitas vezes perigosos. Sua descoberta abriu novas oportunidades na produção industrial de produtos farmacêuticos, plásticos e outros materiais.

O trabalho também rendeu a Chauvin, Schrock e Grubbs o Prêmio Nobel de Química em 2005. Per Ahlberg, membro da Real Academia Sueca de Ciências e do Comitê Nobel de Química, proclamou durante seu discurso de apresentação: “A metátese também economiza energia e material e é amigável com o meio ambiente. Isso nos leva a um passo em direção a um futuro “mais verde”. A ocasião marcou a primeira vez que a Academia Real Sueca de Ciências reconheceu a química verde – o design de produtos químicos e processos que reduzem ou eliminam o uso e a produção de substâncias perigosas para os seres humanos e o meio ambiente – mas o campo vinha ganhando terreno por mais de uma década.

Incentivando Práticas Verdes
A legislação tem controlado o uso, tratamento e descarte de produtos químicos desde a década de 1960. Essa abordagem regulatória tradicional de “comando e controle” custava bilhões de dólares às empresas e ainda acarretava na liberação de vários bilhões de quilos de resíduos químicos no meio ambiente todos os anos. Isso estava previsto para mudar em 1990, quando o Congresso dos EUA aprovou a Lei de Prevenção da Poluição, que procurava reduzir a poluição em sua fonte.

Um ano antes, Paul Anastas era um jovem químico orgânico sintético da Universidade Brandeis. Ele tinha acabado de obter um PhD em química e tinha uma carreira promissora na pesquisa do câncer diante dele, mas ansiava por algo mais. Em vez de projetar moléculas para combater o câncer e trabalhar como consultor industrial, ele queria desenvolver uma estrutura que impedisse a ocorrência de câncer em primeiro lugar. Isso significava evitar que resíduos perigosos fossem liberados no meio ambiente, redesenhando processos e produtos químicos em nível molecular, de modo que fossem “benignos por design”. Em 1989, Anastas aceitou um cargo no Escritório de Prevenção da Poluição e Substâncias Tóxicas da Agência de Proteção Ambiental dos EUA (EPA); em 1991, ele cunhou o termo química verde .

Atualmente, cerca de uma dúzia de universidades e faculdades americanas oferecem aulas de química verde.

Mesmo com a Lei de Prevenção da Poluição, havia pouca motivação financeira para a indústria – ou a academia – procurar processos químicos alternativos. A EPA e a National Science Foundation (NSF) lançaram uma série de programas de subsídios na esperança de obter algumas soluções. Em 1991, a EPA lançou um programa de química verde. Uma parte do programa, “Caminhos sintéticos alternativos para a prevenção da poluição”, ofereceu subsídios para projetar e sintetizar produtos químicos que poderiam reduzir a produção de poluentes. Em 1992, a NSF uniu-se ao Conselho para Pesquisa Química, uma organização sem fins lucrativos, para desenvolver o programa de pesquisa “Síntese e Processamento Químico Ambientalmente Benigno”. Investiu US$ 950.000 em projetos que buscavam desenvolver catalisadores mais seletivos e reações novas ou mais limpas que substituíssem aquelas que exigiam matérias-primas ou solventes tóxicos, e outras que eliminariam partículas de aerossóis.

Foi nessa época que Anastas se encontrou com um químico da Polaroid Corporation chamado John Warner. Warner havia desenvolvido um processo chamado derivatização não-covalente para estabilizar as moléculas em filme instantâneo de múltiplas camadas e evitar que o filme se deteriorasse enquanto estava nas prateleiras das lojas. A química era simples e menos tóxica; satisfez os princípios da química verde que a EPA estava tentando promover. A dupla tornou-se defensora do futuro da química verde, falando sobre o assunto sempre que podia.

Quando Terry Collins, agora diretor do Instituto de Química de Oxidação Verde da Universidade Carnegie Mellon, ouviu pela primeira vez sobre a química verde de Anastas, percebeu que seus interesses de pesquisa estavam alinhados com as iniciativas da EPA. (Desde a década de 1980, Collins procurava catalisadores que pudessem ativar o peróxido de hidrogênio como uma alternativa aos alvejantes à base de cloro, reduzindo ou possivelmente até mesmo eliminando os subprodutos clorados das águas residuais.) Ele percebeu que seus alunos estavam aprendendo as propriedades técnicas dos produtos químicos, mas não estavam aprendendo sobre seus perigos. Como se poderia esperar que a próxima geração de químicos tivesse suas pesquisas futuras guiadas pelos princípios da química verde se não soubessem nada sobre isso? Em 1992, Collins lançou a primeira turma de nível universitário em química verde. Hoje, cerca de uma dúzia de universidades e faculdades americanas oferecem aulas de química verde.

Embora houvesse um crescente apoio institucional e industrial à química verde, Anastas sentiu que havia pouco reconhecimento para aqueles que a abraçaram e não havia financiamento de pesquisa suficiente para encorajar outros a fazê-lo. Enquanto ainda na EPA Anastas pressionou para o desenvolvimento de um programa de premiação que homenagearia empresas e indivíduos que tinham projetado produtos químicos e processos que evitavam o desperdício e a poluição.

Os Prêmios Presidenciais do Desafio da Química Verde foram anunciados em 1995, surgindo da “Iniciativa de Reinventar a Regulamentação Ambiental” do governo Clinton. Para os primeiros prêmios em 1991, os jurados selecionaram cinco projetos que exemplificaram a inovação científica, a aplicabilidade industrial e a segurança ambiental e de saúde. Entre eles estava um novo agente anti-incrustante marinho desenvolvido pela Rohm and Haas: controlava o crescimento de plantas e animais nos cascos dos navios sem a toxicidade e a persistência associadas aos agentes anti-incrustantes convencionais. O composto, 4,5-dicloro-2-n-octil-4-isotiazolin-3-ona, degradou-se rapidamente em água do mar e sedimentos e não se bioacumulou em organismos marinhos. (A empresa ganhou o prêmio novamente em 1998 por desenvolver um pesticida menos tóxico para controlar as pragas de lagartas em lavouras e em gramados, como os que são mantidos em campos de golfe.)

Ano após ano, a química verde continuou a influenciar novos projetos e iniciativas. Anastas reuniu um grupo de inovadores verdes na indústria, da academia e dos laboratórios nacionais para fundar o Instituto Química Verde [Green Chemistry Institute (GCI)] em 1997. A organização sem fins lucrativos visava inspirar pesquisas, organizar reuniões e construir parcerias industriais. (Tornou-se parte do ACS em 2001.)

Anastas reuniu um grupo de inovadores verdes na indústria, da academia e dos laboratórios nacionais para fundar o GCI em 1997.

Em 1998, Anastas e Warner se juntaram para publicar Química Verde: Teoria e Prática , uma introdução básica à química verde que delineava os 12 princípios da química verde (ver Tabela) e articulava a necessidade de solventes mais seguros, matérias-primas renováveis ​​e reagentes catalíticos, e destacou a importância de projetar produtos químicos para degradação. Em 2001, sob a liderança de Warner, a Universidade de Massachusetts-Boston (UMB) começou a aceitar estudantes no primeiro programa de doutorado em química verde.

O entusiasmo de Warner se espalhou para a indústria farmacêutica. No final da década de 1990, Buzz Cue, ex-vice-presidente de ciências farmacêuticas dos laboratórios de pesquisa da Pfizer em Groton, Connecticut, foi membro do conselho consultivo científico da UMB. Ele viu um papel para a química verde na indústria farmacêutica, particularmente no nível de fabricação. Em 2005, Cue, Anastas (que desde então se mudou para liderar o Green Chemistry Institute na ACS) e um punhado de empresas farmacêuticas globais, incluindo a Pfizer, formaram a mesa redonda farmacêutica do GCI. O grupo identificou 10 reações que precisavam de alternativas mais ecológicas e se propuseram a financiar até dois projetos em laboratórios de pesquisa acadêmica anualmente. A mesa redonda financiou 3 laboratórios até o momento.

Esforço não desperdiçado
Talvez uma das aplicações mais importantes da química verde seja na concepção e fabricação de produtos farmacêuticos. Em uma proporção de resíduo para produto, a indústria farmacêutica é uma das menos aceitáveis ​​ambientalmente, gerando 25 a 100 quilogramas de resíduos para cada quilograma de ingrediente farmacêutico ativo fabricado. Tanto quanto 80% desse lixo é solvente. Embora os solventes tenham um papel crítico na fabricação de medicamentos, fornecendo um meio de reação e transferindo calor, os maiores volumes são usados ​​para separar compostos indesejados do produto final.

Em uma proporção de resíduo para produto, a indústria farmacêutica é uma das menos aceitáveis ​​ambientalmente, gerando 25 a 100 quilogramas de resíduos para cada quilograma de ingrediente farmacêutico ativo fabricado.

Por que não projetar a reação para reduzir o desperdício em primeiro lugar? Em 2002, a Pfizer ganhou o prêmio Presidential Green Challenge por melhorar o processo de fabricação da sertralina, o ingrediente ativo do antidepressivo Zoloft. Utilizando um catalisador de paládio mais seletivo, o novo processo de fabricação cortou uma sequência de reação de três etapas em uma única reação, com o bônus de eliminar subprodutos indesejáveis. Trocou por etanol relativamente benigno os quatro solventes – cloreto de metileno, tetraidrofurano, tolueno e hexano – e eliminou anualmente 140.000 quilogramas de tetracloreto de titânio, 99.000 quilogramas de hidróxido de sódio a 50%, 149.000 quilogramas de ácido clorídrico a 35% e 440.000 quilogramas de resíduos sólidos de dióxido de titânio. O novo processo gerou menos resíduos, incorporando uma maior proporção das matérias-primas no produto e reduzindo os custos associados ao armazenamento, tratamento e descarte dos resíduos. Cue chamou isso de “benefício duplo-econômico”. A química verde continua a influenciar a indústria farmacêutica, mas continua sendo um desafio conseguir que empresas de pequeno e médio porte e a indústria de genéricos aprendam e apliquem seus princípios.

Outras indústrias também estão tomando conhecimento. Empresas de materiais especiais como a ‘Rohm and Haas’ continuam a substituir os ingredientes tóxicos por alternativas mais ecológicas em tudo, desde mantas de isolamento até na preservação da madeira. As tecnologias médicas, a fabricação de madeira, os produtos de consumo, a impressão, as tintas e o controle de pragas tornaram-se menos perigosos por meio da química verde.

Mesmo assim, o financiamento para estudar química verde e desenvolver química benigna sempre foi, e continua sendo, escasso. Algumas iterações da legislação proposta não foram aprovadas no Senado em 2004 e 2005. No entanto, apesar dos muitos desafios que permanecem, a aprovação em 2007 pela Câmara dos Deputados [americana] de um projeto de lei que alocará quase US$ 200 milhões em três anos para pesquisa e desenvolvimento em química verde certamente é uma boa notícia.

A história da química verde, embora breve, mostra como o otimismo de alguns entusiastas pode ser uma faísca de inspiração na academia e na indústria. A legislação não resolveu o problema dos produtos químicos tóxicos, mas levou a indústria a perceber que há benefícios econômicos em projetar reações mais inteligentes.

Texto escrito por Hannah Hoag.

Traduzido por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ) do original ‘The Greening of Chemistry’ com autorização oficial dos detentores dos direitos. Revisado por: Kelly Vargas.

Original (English) content from Science History Institute (https://www.sciencehistory.org/). Content translated with permission, but portuguese text not reviewed by the original author. Please do not distribute beyond this site without permission. [[Conteúdo original (inglês) do Science History Institute (https://www.sciencehistory.org/) . Conteúdo traduzido com permissão, mas o texto em português não foi revisado pelo autor do original. Por favor, não distribua o conteúdo sem permissão.]]

Resíduo não, não quero

a reciclagem da água
À medida que os suprimentos de água doce secam, mais e mais pessoas podem ser forçadas a aceitar água reciclada. (Fonte: Flirt/Alamy Stock Photo)

Efluente reciclado é demais para engolir?

Quem é contra a reciclagem? Mais pessoas do que você provavelmente imagina – sendo que estamos falando sobre reciclagem de água. Reciclar a água envolve o tratamento de águas residuais (água do chuveiro, água da lavanderia, água do banheiro) para torná-la potável. A própria ideia faz a maioria das pessoas se contorcer no início – os opositores chamam o processo de “toalete até torneira” – mas a seca e a superpopulação podem trazer essa ideia outrora extrema para o mainstream em todo o mundo.

A tecnologia usada para reciclar a água é realmente simples. Primeiro, uma estação de tratamento passa a água através de tubos longos, finos e ocos – de perto eles parecem com cerdas de escova de dentes – para filtrar detritos maiores que 0,2 mícrons de diâmetro. Em seguida, a água flui através de filtros ainda menores – 300 vezes menores que os cabelos humanos – que removem micróbios, medicamentos, minerais, pesticidas e corantes. Finalmente, a água é misturada com peróxido de hidrogênio e exposta à luz ultravioleta, que ativa o peróxido e permite que ele absorva quaisquer impurezas remanescentes.

Vários lugares ao redor do mundo já usam esse processo de três etapas para reciclar águas residuais, incluindo Cingapura e Windhoek, na Namíbia, ambas produzindo mais de um quarto de sua água dessa forma. E várias cidades e condados dos EUA usam-no para produzir água de irrigação para fazendas e campos de golfe, mas não para beber. Outras localidades bombeiam as águas residuais recicladas para os aquíferos para armazenar.

Mas algumas cidades americanas, como Wichita Falls, no Texas, e Cloudcroft, no Novo México, começaram agora a bombear água reciclada diretamente para as casas das pessoas. E é esse passo que se revelou controverso – embora não deva ser de uma perspectiva de saúde pública. A água residual reciclada é mais pura que qualquer água de torneira disponível; também é muito mais pura que a água engarrafada. Além disso, o abastecimento de água natural nos Estados Unidos não está na melhor forma: as secas já afligem grandes áreas do país. Muitas fontes naturais de água estão contaminadas por fezes de animais, metais pesados ​​e outras impurezas, fazendo com que 19 milhões de americanos fiquem doentes todos os anos. E a maioria dos americanos já bebe água reciclada de uma maneira diferente: quando a água do rio Mississippi chega a Nova Orleans, por exemplo, os cientistas estimam que cinco animais diferentes engoliram cada molécula e a urinaram.

Não há motivo para desprezar a água reciclada pelo seu sabor. Porque é tão pura – o passo de filtração remove a maioria dos sais dissolvidos – basicamente não tem sabor. De fato, algumas cervejarias corajosas no Oregon anunciaram planos de produzir cerveja com esgoto reciclado por essa mesma razão: os cervejeiros vêem essa água como uma folha em branco na qual podem fabricar cerveja para ter o sabor da maneira que desejarem.

Ainda assim, a ideia de beber água tratada causa aversão em muitas pessoas: 13% de todas as pessoas dizem que se recusam categoricamente a beber água reciclada, mesmo quando entendem todos os benefícios econômicos e ambientais. Estudos sobre a psicologia da repugnância ajudam a explicar por quê. Os seres humanos parecem acreditar implicitamente que certas coisas, seja por sua natureza ou por sua proximidade com outras coisas, podem ser contaminadas além da redenção. Estudos mostraram que a maioria das pessoas se recusará a beber suco de maçã fresco de um penico, mesmo que o penico nunca tenha sido usado. Nem comeriam chocolate em forma de cocô. Águas residuais parecem absorver esse mesmo sentimento de repugnância: uma vez no banheiro, nunca estará limpo. Mesmo a nova tecnologia sofisticada não ajuda. Quando Bill Gates demonstrou recentemente um dispositivo para purificar águas residuais em apenas cinco minutos, alguns observadores reclamaram que o processo aconteceu rápido demais: eles queriam mais “distância” psicológica entre o banheiro e a torneira.

Dependendo de onde eles moram, no entanto, essas pessoas podem não ter escolha. Em 2014, San Diego aprovou um plano de US$ 2,9 bilhões para expandir suas atuais estações de tratamento de esgoto para começar a reciclar as águas residuais e colocá-las nas casas das pessoas, de longe a maior cidade americana a dar esse passo. San Diego atualmente importa 90% de sua água de fontes distantes; mas essas fontes estão secando e as usinas de dessalinização (que removem o sal da água do mar) custam muito mais do que a reciclagem. O compromisso de San Diego é especialmente notável porque os eleitores rejeitaram essencialmente o mesmo plano em 1998. Mas daqui a 20 anos a cidade produzirá 314 milhões de litros de água reciclada por dia, um terço da sua necessidade projetada.

A maioria das cidades que estão considerando a água reciclada atualmente enfrentam secas severas, superpopulação ou ambos. Mas o resto do mundo pode não estar muito atrás. Apenas 3% de toda a água na Terra é água doce, e uma em cada oito pessoas atualmente – 900 milhões de pessoas no geral – não tem acesso à água potável. Muitos de nós podem achar que o pensamento de beber água residual reciclada é nojento. Mas, como os diamantes e ouro, o nojo pode se tornar um item de luxo no próximo século, disponível apenas para aqueles que podem pagar por ele.

Traduzido por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ) do original ‘Waste Not, Want Not’ com autorização oficial dos detentores dos direitos. Revisado por: Kelly Vargas.

Original (English) content from Science History Institute (https://www.sciencehistory.org/). Content translated with permission, but portuguese text not reviewed by the original author. Please do not distribute beyond this site without permission. [[Conteúdo original (inglês) do Science History Institute (https://www.sciencehistory.org/) . Conteúdo traduzido com permissão, mas o texto em português não foi revisado pelo autor do original. Por favor, não distribua o conteúdo sem permissão.]]