Categoria: Físico-química

Água pesada

gelo colorido em forminha
O óxido de deutério, que é também chamado de água pesada ou água deuterada, é uma molécula que contém dois átomos de deutério e um de oxigênio (D2O), em uma forma muito semelhante à da água (H2O).
Na água pesada o deutério é um isótopo do hidrogênio, e possui um nêutron e um próton em seu núcleo. Sendo que o hidrogênio contém um núcleo com apenas um próton. E os dois apresentam um elétron.
Este nêutron nêutron a mais no deutério resulta em um diferença no comportamento das moléculas de água pesada, se comparadas à água ´comum´.

Para uma comparação entre D2O e H2O, a equipe do Periodic Videos fez gelo com a água pesada e a água normal, e verificou se o gelo feito com água pesada flutuaria ou não em água comum.

Veja o resultado desta experiência e mais informações no vídeo abaixo.

(com legendas em português.)

Texto escrito por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ) – Universidade Federal do Pampa – Bagé.

Propriedades coligativas – Aula no MIT

professor apontando para o quadro
Inicia com considerações sobre Lei de Raoult e Lei de Henry, e os desvios positivos e negativos em relação à Lei de Raoult. Partindo então para a existência dos azeótropos.
Sobre as propriedades coligativas o professor cita as existentes e alguns exemplos delas, demonstrando as equações utilizadas em algumas.

Aula 23 (áudio inglês, com Closed Caption em inglês)

Anotações da aula em PDF.

Soluções ideais e não-ideais – Aula no MIT

aula 22 curso 5.60 soluções não-ideais
A aula inicia com considerações sobre a regra da alavanca, repassando um assunto abordado na aula anterior deste curso (MIT 5.60).
Na sequência o professor inicia com equações que representam o potencial químico em uma mistura binária de soluções ideais, ressaltando a interpretação da entalpia e entropia para estes casos.
De posse da interpretação da idealidade ele parte para explicar como ocorrem os desvios em sistemas não-ideais.
As leis de Raoult e Henry são utilizadas para explicar os desvios visualizados em um diagrama de pressão versus composição (em mistura binária).

Aula 22
(em inglês)

Anotações da aula (em PDF)
http://ocw.mit.edu/courses/chemistry/5-60-thermodynamics-kinetics-spring-2008/lecture-notes/5_60_lecture22.pdf
(as anotações está com alguns erros que são corrigidos durante a aula (no vídeo))

Texto escrito por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ) – Universidade Federal do Pampa – Bagé.

Soluções ideais – Aula no MIT

professor explicando no quadro
Misturas de dois compostos (A+B) em condições ideais permite a representação em um diagrama de pressão versus composição da mistura, utilizando a Lei de Raoult como guia na explanação.
Mudanças nesta pressão permitem explicar a passagem de fase líquida para a fase vapor na mistura A+B. E situações intermediárias podem ser interpretadas com o uso da regra da alavanca.
Tenha cuidado ao observar as explicações relacionadas à pressão. Pois pode não ser tão intuitivo quanto pela observação da temperatura, cujo detalhamento é feito pelo professor mais para o final da aula.
Suspeito que uma frase foi escrita de forma incorreta no quadro, fique atento.
Aula 21
(em inglês)

Anotações da aula (em PDF)

Texto escrito por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ) – Universidade Federal do Pampa – Bagé.

Pressão versus composição – Aula no MIT

Esta aula inicia com explicações sobre a regra de fases de Gibbs, partindo para relações da lei de Raoult em um sistema com um componente volátil misturado a um não-volátil (exemplo de água com açúcar) e em como isto afeta o diagrama de fases da água (relacionado com as propriedades coligativas).
Após o instrutor passa para considerações sobre o comportamento existente a mistura de duas substâncias voláteis, e em como representar isto em um diagrama de composição versus pressão; levando em conta a composição do líquido e do vapor.

Veja como ficou o diagrama ao final desta aula:
diagrama representando composição do vapor e líquido versus pressão

Assista no vídeo abaixo (49 minutos de duração)
Aula 20 | MIT 5.60
(em inglês)

Anotações de aula (em PDF)

Texto escrito por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ) – Universidade Federal do Pampa – Bagé.

Máquinas térmicas – Em elástico e calor


Vejamos o seguinte vídeo:


As máquinas térmicas são aquelas que recebem energia em forma de calor, melhor dizendo, que operam em ocasiões em que existe uma diferença de temperatura (existindo uma fonte quente e uma fonte fria). Estas máquinas não podem contrariar as leis da termodinâmica, alias… nada pode, que diz que não podemos tranformar toda a energia(calor) em trabalho, logo parte deste calor é transferido para uma fonte de menor temperatura.

No vídeo, a fonte quente é representada pela lâmpada, que cede parte do calor que gera para as borrachas. Isso faz com que as borrachas se comprimam, deslocando o centro de massa para o lado contrário à lâmpada. O restante da energia(calor) flui da fonte quente para uma fonte fria(ar), gerando trabalho.

Além da máquina apresentada no video, podemos citar como exemplo carros movidos a vapor, nos quais temos uma caldeira que gera calor, parte desse calor é conduzido até um pistão que faz com que o carro se movimente, e o restante do calor e direcionado espontâneamente para uma fonte fria.

Para calcular o trabalho realizado por uma máquina térmica usamos a diferença de calor entre as fontes, como na equação seguinte:
W=Q1-Q2

Estas máquinas oferecem um rendimento, que é definido como sendo a razão entre o trabalho que a máquina fornece, W, e a energia sob a forma de calor proveniente da fonte quente, Qq, e sem o qual ela não poderia funcionar. No vídeo, a máquina apresentada possui um baixo rendimento, devido a grande perda de energia para o meio (e uma baixa diferença de temperatura entre as fontes).

Sempre se procura alcançar um rendimento máximo para essas máquinas, porém uma máquina com 100% de rendimento jamais será criada, pois essa violaria a 2ª lei da termodinâmica.

Este texto foi escrito por Cleber Klasener, como parte de um trabalho da disciplina de Físico-química I.