Em mais um de seus passeios pelo Rio de Janeiro, o Professor Martyn foi ao Jardim Botânico para mostrar um pouco sobre a relação do Pau-Brasil e a química.
O segredo do interesse português pelo Pau-Brasil está no seu interior. A madeira apresenta uma intensa cor vermelha, devido á presença da brazilina, substância que na época servia de luxuoso material para tingimento de tecidos caros.
A síntese química deste corante e de outros substitutos atualmente garante que não necessitamos mais da exploração da madeira para o tingimento de tecidos. Mas ainda existe uma aplicação para a qual é difícil achar um material substituto, veja qual é no vídeo abaixo.
Vídeo com legendas em português. Para ativar, clique em play e depois no botão CC para selecionar a legenda.
A observação curiosa sobre a química dos explosivos é algo que pode revelar uma fascinante gama de informações sobre as moléculas e suas propriedades. Claro, desde que tal curiosidade não seja colocada em prática de forma não segura.
Pesquisadores da Universidade de Nottingham explicam como a nitroglicerina e o TNT (2,4,6-trinitrotolueno) possuem o clássico poder explosivo, demonstrando que isto está relacionado com sua estrutura, elementos presentes e velocidade da reação.
Vídeo com legendas em português, para ativar clique em play (tocar) e depois no botão CC.
O ChemSpider, como já comentamos aqui, é uma excelente máquina de procura que fornece informações variadas sobre milhões de diferentes compostos químicos.
O sistema do ChemSpider está em constante aprimoramento realizado pela equipe da Royal Society of Chmistry, da Inglaterra. E uma das funções interessantes é o Embed (embutir), que tem um resultado semelhante ao já disponível em vídeos no YouTube, ou seja, você pode embutir uma molécula presente no banco de dados do ChemSpider em qualquer outro website.
Ao utilizar a função Embed (embutir) o ChemSpider vai solicitar qual o tamanho da estrutura da molécula você deseja exibir no seu website, qual o título do seu material que usará a molécula e se deseja fazer parte dos dados coletados pelo ChemSpider. Após isto basta copiar o código para dentro do html do site que deseja enriquecer com imagens de moléculas.
A vantagem em usar tal sistema está em agregar conteúdo extra ao texto, já que a estrutura, ao ser clicada, levará para um banco de dados repleto de informações. Resultando assim em uma maior integração do seu material em toda a web. O ponto negativo é que tal uso não funcionará na ausência de conexão com a internet.
Utilizando a técnica da nanolitografia tipo dip-pen (DPN), pesquisadores liderados por Jung-Hyurk Lim, da National University na Coréia do Sul, conseguiram ´escrever´ sobre um substrato pequenos pontos contendo vírus adeno-associados.
Esta nanolitografia tipo dip-pen é uma modificação da técnica de microscopia da força atômica. Esta última lembra muito uma agulha de um antigo toca discos, que varre uma superfície ´sentindo´ os sulcos e mapeando do grande precisão as irregularidades por onde passa. A dip-pen aproveita esta precisão de varredura para trocar a ponteira por um material poroso que pode carregar certos compostos e depositar sobre o substrato. É como se trocássemos a agulha do disco por uma caneta tinteiro.
Jung-Hyurk Lim e equipe utilizaram vírus adeno-associados, para embeber a ponteira, mais como uma prova do conceito, para demonstrar a possibilidade de uso de material biológico de tamanho consideravelmente grande – inadequado até o momento em técnicas semelhantes. Isto só foi possível com o pioneiro desenvolvimento da ponteira manufaturada com dióxido de silício e recoberta com polímero biocompatível nanoporoso.
Os pesquisadores sugerem que a nova técnica possui potenciais aplicações em microarranjos de DNA (gene chips) e biomolecular. Devido a aprimorada facilidade em gerar padrões de forma e com as substâncias desejadas.
Os testes iniciais mostraram a capacidade de conseguir mais de 1000 nanopontos individuais sem a necessidade de reabastecimento do material embebido na ponteira. E ao contrário de outras técnicas convencionais, o tempo de contato entre a superfície e a ponta causou apenas um aumento do número de vírus no local do ponto, mas não o seu diâmetro. E este foi variado com a variação do tamanho da ponteira utilizada em cada caso, indo de 80 a 400 nm.
Shin, Y., Yun, S., Pyo, S., Lim, Y., Yoon, H., Kim, K., Moon, S., Lee, S., Park, Y., Chang, S., Kim, K., & Lim, J. (2010). Polymer-Coated Tips for Patterning of Viruses by Dip-Pen Nanolithography Angewandte Chemie International Edition, 49 (50), 9689-9692 DOI: 10.1002/anie.201004654
Texto escrito por Luís Roberto Brudna Holzle – Professor Doutor na Universidade Federal do Pampa ( luisholzle@unipampa.edu.br )
Utilizando como gancho a mudança temporária do logotipo do Google, para comemorar os 25 anos da descoberta do fulereno (C60), o Professor Martyn Poliakoff comenta sobre as propriedades e história deste maravilhoso composto.
Em um experimento simples, demonstram também a diferença de solubilidade entre o carbono extraído de um lápis e o fulereno.
O Google comemora hoje os 25 anos da descoberta do fulereno (buckyball ou buckminsterfullerene). Para isto, como de costume, modificaram temporariamente o logotipo da página principal.