Estrelas velhas… novas moléculas!

Water-building_molecule_in_Helix_Nebula_node_full_image_2
Hubble image: NASA/ESA/C.R. O’Dell (Vanderbilt University), M. Meixner & P. McCullough (STScI); Herschel data: ESA/Herschel/SPIRE/MESS Consortium/M. Etxaluze et al.

Com base do estudo feito no observatório espacial Herschel da ESA, foi descoberto entre as cinzas de estrelas mortas (semelhantes ao nosso Sol), moléculas vitais para a formação da água – os íons OH+.

Todas as estrelas (nosso Sol inclusive) passam por 3 fases: nascimento, meia idade e maturidade. Como sabemos, hidrogênio e hélio são os elementos mais comuns encontrados no universo; esses dois elementos formam uma nuvem imensa de gás chamadas nebulosas. Nessas regiões a força gravitacional é maior, fazendo as nebulosas se contraírem, aumentando a sua temperatura até o ponto de “acender” o combustível nuclear e iniciar a fusão de hidrogênio, nascendo uma estrela (um Sol). Quando as estrelas de tamanhos pequenos à médios como o nosso Sol se aproximam do final de suas vidas, elas tornam-se densas estrelas anãs brancas. Ao fazer isso, elas lançam as suas camadas exteriores de gás e poeira no espaço, criando um caleidoscópio de padrões complexos conhecidos como nebulosas planetárias que serão a base da nova geração de estrelas. Enquanto estrelas novas são capazes de produzir os elementos mais pesados, foi descoberto que nas nebulosas planetárias há uma grande proporção de “elementos da vida” mais leves, como carbono, nitrogênio e oxigênio – feitos por fusão nuclear no interior de uma ‘estrela-mãe’.

Quando esgotado o hidrogênio nas anãs brancas, é derramada intensas radiações ultravioleta em sua volta destruindo moléculas que já haviam sido expelidas pela estrela que estão ligadas em grupos ou anéis de material visto em volta das nebulosas planetários, pensava-se que em sua volta não restringia-se formação de novas moléculas. Mas, com o estudo feito usando o observatório Herschel, descobriu-se que a molécula OH+, que é vital para a formação de água, aparece neste ambiente adverso e, talvez, mesmo depende dele para se formar.

Fonte: Esa

Texto escrito por Bruna Lauermann.

Hidróxido de sódio absorvendo água (vídeo em timelapse)

grãos de soda cáustica sobre vidro em fundo escuro
O NaOH (hidróxido de sódio, ou soda cáustica) tem uma grande facilidade em absorver água (efeito higroscópico). Mesmo só com a presença de umidade do ar já é possível ver uma lenta absorção de água pelo material sólido quando deixado livre no ambiente.
No vídeo abaixo é possível observar esse lento e contínuo efeito. Os grãos de NaOH foram deixados sobre uma superfície de vidro (placa de petri) por 1 hora e 15 minutos. As mudanças foram registradas em uma sequência de 800 fotografias reunidas então em um vídeo de 30 segundos (efeito timelapse).
Deixo aqui uma opinião pessoal! Observando o resultado ao longo do tempo é possível perceber que os grãos de NaOH que estavam mais isolados conseguiram absorver água um pouco mais rapidamente dos que os agregados de grãos. Suspeito que isso se ocorra pela disponibilidade de umidade em volta do grão. E grãos mais isolados tem mais umidade do ar disponível por perto para absorver, não precisando ‘competir’ pela umidade como no caso dos agregados de grãos. Aceito críticas e sugestões nos comentários. 🙂


Texto escrito por Prof. Dr. Luís Roberto Brudna Holzle.

Explosão do metano em câmera lenta

chama da explosão de metano e oxigênio
Neil, o técnico de laboratório, demonstra o que ocorre durante a queima de uma mistura de metano e oxigênio. ¬¬ Claro que ocorre uma explosão!
A queima da mistura metano e oxigênio é muito rápida; tanto que mesmo uma câmera especial quase não consegue captar os detalhes da reação.
Em comparação a queima de metano puro é bem mais lenta. Isso ocorre porque o metano puro precisa encontrar oxigênio do ar para continuar a reação, diminuindo um pouco a intensidade da explosão.
E… não tente isso em casa!
Vídeo com legendas em português. Ative pelo player do YouTube.

Texto escrito por Prof. Dr. Luís Roberto Brudna Holzle.

Palha de aço em vinagre – timelapse

reação de vinagre e ferro
A reação entre o ferro da palha de aço e o vinagre é relativamente lenta, então resolvemos comprimir 1 hora e 40 minutos de reação em um vídeo com 30 segundos de duração (usando a técnica de timelapse).
Veja o resultado…

As bolhas que aparece durante a reação são de hidrogênio, que é produzido lentamente e em pequena quantidade.
O vinagre comum possui uma baixa concentração de ácido acético (de 3 a 9%) e a reação com o ferro pode resultar em no aparecimento de um pouco de acetato de ferro(II e III) em solução.
A cor avermelhada da parte superior aparece por causa do maior contato da palha de aço com o ar (oxigênio) resultando em óxidos de ferro.

O maior livro de autógrafos de todos os tempos

professor e bibliotecário da royal society
Imagine um livro que contenha as assinaturas de Charles Darwin, Isaac Newton, Robert Boyle, Edmon Halley, John Dalton,… esta preciosidade existe e faz parte do acervo da biblioteca da Royal Society!
O livro tem outras particularidades. É todo decorado com brasões, feito em pele de animal e armazenado em ambiente controlado para ser exposto somente em momentos que ele é assinado por alguém importante.

Martyn Poliakoff, que também tem a sua assinatura no livro, mostra um pouco mais sobre o livro no vídeo abaixo.
(vídeo com legendas em português, ative pelo YouTube)

Lança-chamas químico

chama azul em líquido queimando
O professor Stephen Liddle realiza um impressionante experimento utilizando dietil zinco; mostrando que o zinco está longe de ser um elemento chato.

estrutura do composto
Dietil zinco

Em um vídeo anterior a queima do dietil zinco resultou em uma chama com cor amarela, mas que na verdade deveria ser azul. Para minimizar a contaminação, o novo experimento foi feito com uso de uma seringa de plástico e filmado em câmera super lenta.

Simon Woodward, da Universidade de Nottingham, fala também sobre a descoberta do dietil zinco pelo pesquisador Edward Frankland e sobre o possível exagero na descrição da violência da reação do composto com a água.

O vídeo não apenas demonstra a manipulação do dietil zinco, mas também mergulha na intrigante história de sua descoberta e destaca suas multifacetadas aplicações na química orgânica, com ênfase na síntese de uma variedade de compostos. Essa experiência oferece uma compreensão aprofundada das complexas reações químicas que envolvem compostos organometálicos, ao mesmo tempo que ressalta a estética intrínseca e os potenciais perigos inerentes a essas substâncias.

Vídeo com legendas em português. Ative as legendas pelo vídeo no Youtube.


Texto e legenda escritos por Luís Roberto Brudna Holzle – Professor Doutor na Universidade Federal do Pampa ( luisholzle@unipampa.edu.br )