Imagine provar alho sem colocá-lo na boca — na verdade, sem sequer cheirá-lo. Pode parecer improvável, mas esse é exatamente o fenômeno curioso demonstrado em um vídeo produzido pela American Chemical Society, no canal Reactions, que traz à tona um surpreendente truque de química alimentar: a capacidade de “sentir” o sabor do alho através da sola dos pés.
O experimento começa de forma inusitada: dois participantes se sentam em bancos, descalçam-se e colocam fatias de alho cru dentro de sacos plásticos, que depois são amarrados em torno de seus tornozelos. O narrador explica que a química nos permite experimentar alimentos de maneiras inesperadas — e esta é, sem dúvida, uma delas.
A ideia é apresentada como um “truque de festa”, e o vídeo recomenda alguns cuidados para garantir que o resultado seja mesmo causado por processos químicos, e não por simples inalação do cheiro do alho. O dente de alho deve ser fatiado em uma sala separada e isolado em um saco bem fechado. Só então, em outro ambiente sem qualquer traço de odor, os participantes devem colocar os pés descalços dentro do saco contendo o alho e mantê-los assim por cerca de uma hora.
Após esse tempo, os participantes relatam sensações surpreendentes: um sabor intenso de alho começa a surgir na boca, descrito como “ondas de sabor”, às vezes com um leve toque metálico. Além disso, o cheiro também se torna perceptível, mesmo sem contato direto com o alho no ambiente.
A explicação científica por trás desse fenômeno é fascinante. Não se trata de papilas gustativas nos pés, evidentemente. O responsável é um composto chamado alicina, presente no alho cru. Essa molécula possui propriedades químicas que a tornam capaz de atravessar as barreiras da pele — tanto as lipídicas (oleosas) quanto as aquosas. Uma vez absorvida, a alicina entra na corrente sanguínea e circula pelo corpo até atingir os receptores de sabor e olfato, localizados na boca e no nariz. É aí que o corpo “percebe” o alho, mesmo sem consumi-lo da forma tradicional.
O uso dos sacos plásticos é um detalhe importante: eles impedem que o cheiro do alho se espalhe pelo ambiente, assegurando que o efeito observado decorre unicamente da absorção transdérmica da alicina — ou seja, sua entrada no corpo através da pele.
Vídeo com legenda em português. Ative a exibição das legendas pelo YouTube.
Legenda do vídeo escrita por Luís Roberto Brudna Holzle – Professor Doutor na Universidade Federal do Pampa ( luisholzle@unipampa.edu.br ). Texto revisado com ajuda de IA.
Nossa compreensão das endorfinas pode ser rastreada até a cabeça de um porco. (Boston Public Library, Leslie Jones Collection)
Sam Kean reconta a busca pelos furtivos analgésicos cerebrais.
Todas as manhãs antes do amanhecer, o neurocientista John Hughes pedalava até o matadouro com uma serra, um machado e uma faca em uma cesta. Ele cumprimentava os homens mal-humorados que cerravam as cabeças dos porcos e iniciava sua súplica diária para que lhe cedessem alguns dos crânios. A princípio, Hughes assegurava a cooperação, exibindo as maravilhas da neurociência e a nobreza de sua pesquisa. Pense em todas as pessoas que poderíamos ajudar a controlar a dor crônica, ele explicou, se soubéssemos como o próprio cérebro acalma a dor usando neurotransmissores. Hughes logo percebeu, no entanto, que com uma boa garrafa de uísque conseguia a cooperação dos trabalhadores muito mais rapidamente, e ele começou a adicionar algumas à sua cesta todas as manhãs.
A descoberta da maioria dos neurotransmissores – substâncias químicas que enviam sinais de um neurônio para outro dentro do cérebro – seguiu um padrão repetitivo. Os cientistas se deparam com uma nova substância química no cérebro enquanto investigavam o comportamento celular. Eles isolavam e testavam a amostra purificada nos neurônios no laboratório. Se isso afetasse o comportamento desses neurônios de maneira clara e consistente, então a substância química provavelmente faria algo semelhante dentro do cérebro vivo. Essa estratégia foi muito bem-sucedida ao longo do século 20 e ajudou os cientistas a identificar a maioria dos cerca de cem neurotransmissores que conhecemos hoje.
Mas houve uma grande exceção a esse padrão: a descoberta dos analgésicos naturais do cérebro – as endorfinas. Quando se tratava de dor, os cientistas começaram estudando como a morfina, o ópio e outras drogas semelhantes funcionavam e só mais tarde começaram a procurar substâncias químicas no cérebro. Em geral, os neurotransmissores transmitem mensagens bloqueando a superfície das células: um neurônio libera a substância química, que nada através de uma pequena junção (a sinapse) e liga-se a receptores em outro neurônio. Durante a década de 1950, os cientistas perceberam que os opiáceos também funcionavam ligando-se aos receptores dos neurônios. E se esses produtos químicos artificiais eram tão adequados à ligação, o cérebro já deveria empregar substâncias químicas naturais com uma estrutura semelhante – ou os receptores não existiriam.
Quais eram essas substâncias químicas, no entanto, ninguém sabia. Então Hughes, um jovem londrino que trabalhava em Aberdeen, na Escócia, decidiu procurá-las. Acabou sendo um dos projetos mais sujos e nauseantes da história da ciência.
Hughes chamou os supostos novos neurotransmissores de Substância X, e por alguma razão ele decidiu que o melhor lugar para procurá-los era dentro do cérebro dos porcos, o que significava uma visita diária ao matadouro com sua serra e garrafa de uísque. Bem subornados, os trabalhadores levavam para Hughes cerca de 20 crânios de porco e, enquanto ele lutava contra ratos, ele cortava cada cérebro do tamanho de uma toranja em cerca de 10 minutos e depois os empacotava em gelo seco. Várias horas depois, ele voltava ao laboratório, esmagava os cérebros até ficar uma pasta cinzenta e os dissolvia em acetona. (Colegas lembram da combinação que cheirava à cola de avião e gordura rançosa.) Finalmente, ele centrifugava a pasta e evaporava as várias camadas para testar se elas eram a Substância X.
Agora vinha a parte estranha. O mentor de Hughes, Hans Kosterlitz, era especialista mundial em duas partes da anatomia extremamente específicas: o íleo de Cavia e o ducto deferente murino, mais conhecido como intestino de porquinho-da-índia e tubo de espermatozoides de camundongo. Quando dissecados do resto do corpo, cada uma dessas partes parecem minúsculas e enroladas, e cada uma tem uma propriedade bizarra. Se você suspendê-la em solução salina e ativar um certo nervo, ela vai se contrair por conta própria, batendo como se estivesse de alguma forma loucamente viva.
Igualmente bizarro, em algum ponto, Kosterlitz determinara que tanto o íleo Cavia quanto o ducto deferente murino eram superlativamente sensíveis a substâncias químicas semelhantes à morfina. Ou seja, uma vez que esses órgãos começassem a se contrair, até mesmo traços de morfina parariam imediatamente os espasmos. Assim, Kosterlitz e Hughes passaram meses ativando os tubos e intestinos de espermatozoides – produzindo evacuações e orgasmos desincorporados em um béquer – e injetando substâncias após substâncias dos cérebros dos porcos para ver se alguma coisa interrompia esses espasmos. Eles finalmente encontraram uma substância – uma cera amarela com cheiro de manteiga estragada – que interferia nas contrações, da mesma forma como a morfina. A Substância X foi encontrada.
A Substância X acabou ficando conhecida como endorfina, uma junção de “morfina endógena” e, exatamente como Hughes esperava, estudá-la forneceu informações importantes sobre como o corpo administra e até bloqueia a dor. Então, da próxima vez que você estiver correndo e de repente sentir o prazer de correr, ou você esmagar o seu polegar com um martelo e notar que ele não dói tanto quanto deveria, você pode agradecer ao John Hughes, e sua pilha de miolos de porco por revelar o porquê.
Texto escrito por Sam Kean.
Traduzido por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ) do original ‘The Strange, Gruesome Search for Substance X’ com autorização oficial dos detentores dos direitos.
Original (English) content from Science History Institute (https://www.sciencehistory.org/). Content translated with permission, but portuguese text not reviewed by the original author. Please do not distribute beyond this site without permission. [[Conteúdo original (inglês) do Science History Institute (https://www.sciencehistory.org/) . Conteúdo traduzido com permissão, mas o texto em português não foi revisado pelo autor do original. Por favor, não distribua o conteúdo sem permissão.]]
Nossas últimas publicações no perfil @ligacaoquimica no Instagram. Você pode clicar nas imagens abaixo para obter a versão em maior resolução. O uso não comercial é livre desde que citada a fonte.
Tiopentato de sódio O tiopentato de sódio era um dos principais componentes do ‘soro da verdade’ – que faria com que a pessoa ficasse mais propensa a contar a verdade em um interrogatório investigativo. No entanto o método raramente é utilizado por ser pouco efetivo e pela dificuldade de ser aceito legalmente. O tiopentato de sódio também era usado nos Estados Unidos como injeção letal na execução de criminosos. Recentemente ocorreu uma falta da substância por restrições na produção e comercialização para este fim. https://www.instagram.com/p/Bnljlv1gKN-/
DDT O DDT foi inicialmente sintetizado em 1874 com seu alto poder inseticida descoberto em 1939. Por ser muito eficiente e aparentemente inofensivo aos humanos, o DDT foi usado em larga escala – com mais de 1,8 milhão de toneladas produzidas. Em 1962, a bióloga Rachel Carson publicou o livro ‘Primavera Silenciosa’, alertando para o severo desequilíbrio ecológico causado pelo uso indiscriminado do DDT. Resultando em um gradual banimento global do produto. Atualmente poucos países ainda fazem uso do DDT. https://www.instagram.com/p/BnquGP7lE5b/
Ácido butírico O ácido butírico tem um cheiro que lembra muito o cheiro de vômito ou de queijo azedo – justamente por ser um dos produtos da fermentação do leite. O curioso é que algumas marcas de chocolate, como a Hershey’s, podem conter pequenas quantidades de ácido butírico – por serem consideradas agradáveis ao paladar americano. Que é removido na exportação para países que não apreciam esse sabor. O ácido butírico também é um dos responsáveis por aquele característico cheiro de cachorro molhado. https://www.instagram.com/p/Bn3pKF_lXWY/
Astaxantina Flamingos, salmões e lagostas têm algo em comum. A presença de carotenóides – principalmente da astaxantina – que garantem belos tons de vermelho. Flamingos e salmões ficam com cores pálidas quando criados em cativeiros; e costumam receber adição de astaxantinas na sua dieta para recuperar a cor. Por ser considerado um poderoso antioxidante a astaxantina é comercializada como suplemento. Cuidado com as falsificações, você pode acabar comprando um simples corante vermelho! https://www.instagram.com/p/Bn6MgtKgOT9/
Uma coleção das últimas publicações no nosso Instagram @ligacaoquimica ( https://www.instagram.com/ligacaoquimica/ ).
Você pode usar livremente as imagens abaixo desde que cite a fonte (ou este blog ou a conta no Instagram). Clique nas imagens para obter a imagem em tamanho maior.
Fluoresceína
A fluoresceína é um pó de cor avermelhada que se transforma em uma cor verde intensa quando em solução. Este era um dos motivos pelos quais os aviões alemães na Segunda Guerra carregavam uma pequena quantidade de fluoresceína para facilitar a localização e o resgate em caso de acidente na água.
Na década de 60 mais de 45 quilogramas da substância foram usadas para colorir de verde o rio Chicago em uma comemoração do Dia de São Patrício. Atualmente um corante mais ecológico é usado. https://www.instagram.com/p/BnWCbp9A_1T/
Fosgênio Temos uma noção errada de que necessariamente as substâncias tóxicas tem um cheiro ou sabor extremamente ruins e com sintomas rápidos. Este é um cartaz da Segunda Guerra Mundial alertando que armas químicas contendo fosgênio são incolores e tem um cheiro parecido com feno mofado ou milho verde.
O fosgênio foi bastante usado durante a Primeira Guerra Mundial e durante a Segunda Guerra Sino-Japonesa. https://www.instagram.com/p/BnTqcgUACdr/
Acetato de celulose Os primeiros filmes utilizados na indústria cinematográfica eram feitos com nitrato de celulose, um material tão inflamável que os operadores de projeção recebiam treinamento contra incêndios.
A descoberta do acetato de celulose em 1865, pelo químico francês Paul Schützenberger, foi uma solução para este problema.
Infelizmente parte do acervo registrado em acetato de celulose sofre degradação com o tempo no que é conhecido como ‘síndrome do vinagre’, pela lenta liberação do ácido acético da molécula original. Lembrando que não necessariamente o que é chamado atualmente de ‘acetato’ é feito inteiramente de acetato de celulose. https://www.instagram.com/p/BnJNFuDD-Jc/
Trimetilamina
Olá! Que temos aqui? É homem ou peixe? Está vivo ou morto? É peixe; o cheiro é de peixe, esse velho cheiro de ranço, que lembra muito a peixe… [A Tempestade, William Shakespeare].
Algumas pessoas podem ter a rara ‘síndrome do odor de peixe’, conhecida como trimetilaminuria, pela incapacidade em metabolizar a trimetilamina – resultando em um forte odor na urina, suor e hálito. Não tendo cura conhecida o desconforto pode ser minimizado por controle da dieta, uso de alguns antibióticos específicos. Presente na decomposição de peixes a trimetilamina é o alvo de sensores usados na indústria pesqueira para determinar se os peixes estão frescos. https://www.instagram.com/p/BnGzZjygDX2/
Galantamina A galantamina é um alcaloide que pode ser encontrado na planta campânula-branca; com atividade terapêutica conhecida desde a antiguidade.
Agindo como um inibidor da colinesterase a substância encontra aplicação no tratamento da Doença de Alzheimer. Pelo mesmo motivo a galantamina tem sido estudada como possível antídoto no envenenamento por organofosforados – incluindo armas químicas como sarin, VX, soman e tabun. (Somente faça uso de substâncias com prescrição médica. Nunca faça uso de plantas sem um conhecimento total do que está fazendo). https://www.instagram.com/p/BnEE79WAXYd/
Esqualeno O esqualeno é um importante composto orgânico visado pela indústria de cosméticos e na produção de vacinas; nas quais funciona como adjuvante em conjunto com surfactantes que melhoram a resposta imunológica. A preocupação de conservacionistas é que uma das fontes mais abundantes do esqualeno é encontrada em fígados de tubarões; gerando sobrepesca de espécies ameaçadas. Felizmente óleos naturais e biossíntese são procedências alternativas. https://www.instagram.com/p/BnBaYa5FO16/
Óxido de tributil estanho
O óxido de tributil estanho foi comercializado por muitos anos como um componente em tintas anti-incrustantes para cascos de barcos ou qualquer equipamento que se desejava evitar a aderência de algas e invertebrados.
No entanto um importante problema só foi percebido anos mais tarde; a substância causava alterações sexuais em diversos organismos marinhos. Sendo então banida globalmente a partir de 2008 na Convenção de Roterdã. (Fonte: Chemistry World Podcast). https://www.instagram.com/p/Bm_DHA6FJhD/
Oseltamivir O oseltamivir, comercializado com o nome Tamiflu, é uma medicação antiviral – indicada no tratamento da gripe (Influenzavírus A e B) – que ainda guarda grande polêmica sobre a sua real eficácia. O Tamiflu não é vendido como uma cura, mas como um auxiliar na redução da severidade dos sintomas da gripe. O mecanismo de ação seria pela inibição da neuraminidase do vírus influenza – uma enzima necessária para liberar partículas virais das células infectadas. (Fonte: Chemistry in its Element (podcast)). Atenção! Somente faça uso deste medicamento com orientação médica. Siga nosso Instagram (@ligacaoquimica) https://www.instagram.com/p/Bmx9lmNg7RG/
Aconitina Aconitina é um alcaloide muito tóxico produzido por plantas do gênero Aconitum – do qual existem mais de 250 espécies espalhadas pelo mundo. Antigamente era usada como medicamento. Em 1880 Dr. Meyer, prescreveu gotas de aconitina a um menino. Após o tratamento, o menino ficou muito doente, e sua mãe voltou a procurar o médico, culpando o medicamento pela doença da criança. Dr. Meyer ficou tão indignado com alguém que ousou questionar sua prescrição que ele tomou uma dose do frasco do remédio para provar que era perfeitamente seguro. Cinco horas depois o doutor morreu de envenenamento por aconitina. O problema foi que o medicamento tinha sido preparado com uma raiz mais forte de outra espécie de Aconitum. (Fonte: A is for Arsenic The Poisons of Agatha Christi, Kathryn Harkup) Usos medicinais de extratos da planta são evitados pois a diferença entre a dose terapêutica e a dose mortal é muito tênue. A presença da aconitina pode ser detectada no sangue por técnicas de análise química/forense. Siga nosso Instagram (@ligacaoquimica) https://www.instagram.com/p/Bm0ucWrDr9Y/
Lewisite
Este cartaz da época da Segunda Guerra Mundial alertava para o perigo da Lewisite, uma arma química que em alguns casos poderia ter um odor parecido com gerânios. Os vapores da Lewisite são extremamente tóxicos e causam queimaduras na pele e olhos – com a formação de bolhas – dor intensa no sistema respiratório e em altas concentrações é fatal em apenas 10 minutos. Felizmente a substância foi raramente usada em campo de batalha – com nenhuma ocorrência durante a Segunda Guerra. Publicado no nosso Instagram (@ligacaoquimica) https://www.instagram.com/p/BmTFkMeHmQW/
Brometo de etídio
Na década de 40 o brometo de etídio era utilizado como um medicamento antiparasítico, antiviral ou antibacteriano. Por ter um brilho característico sob luz ultravioleta e uma grande afinidade com o DNA – realizando intercalação – a substância é atualmente muito utilizada como marcador em pesquisas em biologia molecular para processos como a eletroforese em gel. O manuseio deve ser feito com cuidado pois tem um potencial mutagênico. Publicado no nosso Instagram (@ligacaoquimica) https://www.instagram.com/p/BmRNWzLnUET/