Tag: gás

Metano – Sem cheiro

Metano, o popularmente conhecido como ´gás dos pântanos´, não tem cheiro. É completamente inodoro. Esta informação se faz importante no momento em que vemos as manchetes – já um tanto infrequentes – da ocasião de interdição de um shopping em São Paulo e de preocupações em um condomínio construído em local próximo, por causa de um iminente problema devido à presença de altas quantidades de gás metano no local.

Todo este problema ocorrido no shopping iniciou quando naquele local foi depositada uma grande quantidade de lixo. E é a presença deste material em decomposição, escondido sobre uma oportuna camada de terra, que causa a geração do metano. O gás metano neste caso tem a sua origem na degradação anaeróbia (em escassez de oxigênio) que ocorre pela presença de microorganismos no material em decomposição.

A confusão sobre o odor do metano provavelmente origina-se no fato do gás ser resultado de apodrecimento ou de processos de digestão em ruminantes. Ou então pela associação com o gás de cozinha (que não contém metano), que também originalmente não teria um cheiro forte, e recebe a adição de substâncias odorizantes, da classe das mercaptanas, para que sirva de alerta em caso de vazamento.

Efeito estufa

O metano não é um perigo somente por ser explosivo – acima de uma certa concentração no ar – mas por ser mais um dos responsáveis pelo aumento do efeito estufa na atmosfera terrestre. Se comparado com o famoso vilão gás carbônico, o metano tem um potencial 25 vezes maior em causar este efeito estufa.

E para piorar, grandes quantidades de metano estão armazenadas em material orgânico presente em regiões geladas do planeta e também presas em uma mistura de gelo e metano, no que é conhecido como hidratos de metano, que ocorrem naturalmente em lodo marinho em algumas regiões do oceano. Um aumento da temperatura global poderia causar a liberação deste metano que causaria mais aquecimento e mais liberação do gás. Um círculo vicioso com resultados preocupantes.

metano e gelo queimando
Queima de hidrato de metano (Fonte: Serviço Geológico dos Estados Unidos)

As quantidades totais desses hidratos de metano em todas reservas terrestres ainda são motivo de debates entre os especialistas. Sendo de difícil uso para fins comerciais, por estar misturado em lodo, o assunto é mais uma das preocupações relacionadas ao aquecimento global.

A tentativa de queima do metano (CH4) para evitar que vá para a atmosfera só amenizaria em parte o problema, já que ao ser queimado o gás produziria gás carbônico (CO2) e água (H2O). E lá estaríamos nós rumando ao efeito estufa pela presença do gás carbônico.

CH4 + 2O2 → CO2 + 2H2O

Outras fontes

Dito anteriormente que o metano poderia ser gerado em digestão de ruminantes, reservo o assunto para uma próxima oportunidade, na qual poderemos conhecer um pouco mais sobre o arroto e a flatulência em herbívoros.

OBS: Este texto foi escrito por Luís Roberto Brudna Holzle, editor do ´Em Síntese´, e publicado no jornal Folha do Sul Gaúcho, dia 07 de dezembro de 2011. A reprodução foi gentilmente autorizada pela equipe do jornal.

Hexafluoreto de enxofre – uma molécula para odiar


No podcast produzido pela Royal Society of Chemistry, o Professor Dr. Andrea Sella comenta que existe uma molécula que ele realmente odeia, e esta é o hexafluoreto de enxofre (SF6).

O hexafluoreto de enxofre já fez famosas aparições em diversos vídeos pela internet, em um deles a elevada densidade do gás faz com que este acumule no fundo do recipiente em que é gentilmente colocado, causando um efeito semelhante a um ´líquido invisível´;

em outro vídeo Adam Savage, apresentador do programa Mythbusters, mostra a influência do gás na voz. Na primeira parte do vídeo Adam inala hélio, ficando com voz de Pato Donald, e logo em seguida inala hexafluoreto de enxofre, tornando a voz forte e pesada.

Tal mudança na voz ocorre pela diferença de vibração das cordas vocais quando em presença destes dois tipos de gases.

Mas porque Andrea Sella poderia odiar um gás? Ele argumenta corretamente que o SF6 é um gás extremamente inerte, permanecendo estável mesmo em condições severas. E justamente por isso tem aplicação em situações nas quais algo inerte é desejado, como por exemplo na indústria de produção de magnésio, na qual serve como uma capa de proteção de contato do magnésio com o oxigênio do ar. E o ódio de Sella torna-se claro quando lembra que o SF6 é um gás-estufa extremamente potente, com um efeito 32.000 vezes maior do que o gás-estufa CO2, se considerado um intervalo de 500 anos de atuação; que certamente será ainda maior, já que o SF6, por ser inerte, tem uma expectativa de duração na atmosfera de mais de 3200 anos.

A indústria, já sabendo destes problemas, busca constantemente modos de substituir o uso do material por outras substâncias menos agressivas ao meio ambiente.

Talvez não só a voz ganhe um timbre de vilão com o gás, mas ele próprio mostra o seu lado traiçoeiro.

Podcast
https://www.chemistryworld.com/podcasts

Para baixar o podcast, em inglês, acesse
http://www.rsc.org/images/CIIE_SF6_tcm18-197761.mp3

Hélio- 3

foto da Lua
O hélio-3, com seu nome estranho e fonte de curiosidade que aficciona, é nada mais do que um isótopo do hélio.
A aplicação promissora para um futuro (talvez distante) é em processos de fusão nuclear.

Primeiro, o que são os isótopos do hélio?
Para este elemento são conhecidos um total de oito isótopos, e destes somente o hélio-3 e o hélio-4 podem ser considerados estáveis.
Na atmosfera da Terra o He-4 é um milhão de vezes mais abundante queo He-3.
O núcleo destes hélio contém sempre 2 prótons, mas diferenciam-se pelo número de nêutrons. E neste caso o He-3 possui 1 nêutron, o He-4 possui 2 nêutrons, o He-5 tem 3 nêutrons, e assim por diante, até o estranho He-10, contendo 8 nêutrons.

E a fusão?
Bom, a fusão é a chave para a energia limpa (ou ´menos suja´) para alguns cientistas atualmente, a fusão nuclear pode ser entendida através do seguinte pensamento:
Junte dois átomos para formar outro com núcleo maior, com uma grande liberação de energia.
Tal processo é complicado e necessita de muita energia para ser iniciado, e ainda não é totalmente controlado para a geração contínua de energia na Terra, mas ocorre diariamente no Sol.

Mas existem os seguintes problemas, a ciência da fusão controlada e eficiente ainda esta engatilhando, o He-3 é escasso na terra, solução é a seguinte aperfeiçoar os estudos na fusão e extrair He-3 da Lua.
Da Lua? Exatamente o que você leu! A Lua possui grandes quantias de He-3. Mas neste caso trocaremos um problema por outro, como transportar grandes quantias de um elemento da Lua até a Terra? E a história da corrida tecnológica continua…

Texto escrito por Dison Franco.

Dióxido de carbono – fases e propriedades


O dióxido de carbono (CO2) é uma molécula muito interessante, e no vídeo abaixo explicam um pouco sobre as fases (sólido, líquido e gás) do CO2, mostrando como este pode passar direto da fase sólida (gelo seco) para a fase gás, sem passar por uma fusão, no que é conhecido como sublimação.

Esta é a primeira parte do vídeo. Em breve estará disponível a tradução para a segunda parte.
(com legendas em português)

Calor humano

pote com canudo
Para montar este experimento você vai precisar de:
– Frasco pequeno com tampa
– Martelo e prego (para furar a tampa)
– Canudinho
– Cola (ou outro material para vedar o espaço entre o canudinho e a tampa)
– Água com corante (para facilitar a visualização)

A ideia é simples. Basta colocar um pouco de água dentro do frasco e fechar. Após isto envolva o frasco com as mãos. Se as suas mãos estiverem quentes o ar dentro do frasco vai se expandir um pouco empurrando a água pelo canudinho. Lembre que o canudinho deve estar com a ponta inferior dentro da água que está no frasco.

Este fenômeno pode ser explicado pela equação de clapeyron (gás ideal). PV=nRT
Existe portanto uma proporcionalidade da temperatura com a pressão e volume.

Fonte:
http://fq-experimentos.blogspot.com/2008/04/calor-humano.html

Material obtido com a contribuição de Dison Franco.

Veja também:
Composição humana