Tag: mudanças climáticas

Por que culpamos o dióxido de carbono pelas mudanças climáticas, quando o vapor de água é um gás de efeito estufa muito mais abundante?

A água adicional que adicionamos à atmosfera não permanece por tempo suficiente para mudar a temperatura a longo prazo do nosso planeta. No entanto, a água desempenha um papel fundamental como coadjuvante nas mudanças climáticas.

Com toda a atenção dada às emissões de dióxido de carbono (CO2) que aquecem o clima, você pode se surpreender ao saber que o CO2 não é o gás de efeito estufa mais importante que afeta a temperatura da Terra. Essa distinção pertence à água.

Podemos agradecer ao vapor d’água por cerca de metade do “efeito estufa” que mantém o calor do sol dentro da nossa atmosfera. “É o gás de efeito estufa mais importante em nosso sistema climático, devido às suas concentrações relativamente altas,” diz Kerry Emanuel, professor emérito de ciência atmosférica no MIT. “Pode variar de quase nada a até 3% de um volume de ar.”

Compare isso com o CO2, que hoje constitui cerca de 420 partes por milhão da nossa atmosfera—0,04%—e você verá imediatamente por que o vapor d’água é um elemento crucial do nosso sistema climático.

Então, por que nunca ouvimos cientistas do clima soando o alarme sobre nossas “emissões de água”? Não é porque os humanos não colocam água na atmosfera. Mesmo o escape que vem de uma usina a carvão—o exemplo clássico de uma emissão de gás de efeito estufa que aquece o clima—contém quase tanto vapor d’água quanto CO2. É por isso que esse escape forma uma nuvem visível.

Mas o vapor d’água difere de uma maneira crucial de outros gases de efeito estufa como CO2, metano e óxido nitroso. Esses gases de efeito estufa são sempre gases (pelo menos quando estão em nossa atmosfera). A água não é. Ela pode se transformar de gás em líquido em temperaturas e pressões muito comuns na nossa atmosfera, e frequentemente o faz. Quando está mais frio, cai do ar como chuva ou neve; quando está mais quente, evapora e sobe novamente como gás.

“Este processo é tão rápido que, em média, uma molécula de água reside na atmosfera por apenas cerca de duas semanas,” diz Emanuel.

Isso significa que a água extra que colocamos na atmosfera simplesmente não permanece tempo suficiente para alterar o clima; você não precisa se preocupar em aquecer a Terra toda vez que ferve uma chaleira. E realmente não há quantidade de vapor d’água que pudéssemos emitir que mudaria isso. “Se pudéssemos magicamente dobrar a quantidade de vapor d’água na atmosfera, em aproximadamente duas semanas o excesso de água iria chover e nevar de volta para oceanos, geleiras, rios, lagos e águas subterrâneas,” diz Emanuel.

No entanto, o vapor d’água é uma parte importante da história da mudança climática—apenas de uma forma um pouco indireta.

A qualquer temperatura dada, existe um limite superior teórico para a quantidade de vapor d’água que o ar pode conter. Quanto mais quente o ar, mais alto esse limite superior. E embora o ar raramente contenha tanta água quanto poderia—graças à chuva e neve—Emanuel diz que, a longo prazo, temperaturas em ascensão aumentam gradualmente a quantidade média de vapor d’água na atmosfera a qualquer momento.

E claro, as temperaturas hoje estão subindo, graças às emissões humanas de gases de efeito estufa de longa duração como o CO2. O vapor d’água amplifica esse efeito. “Se a temperatura sobe, a quantidade de vapor d’água sobe com ela,” diz Emanuel. “Mas como o vapor d’água é em si mesmo um gás de efeito estufa, o aumento do vapor d’água causa temperaturas ainda mais altas. Nos referimos a esse processo como um feedback positivo, e ele é considerado o feedback positivo mais importante no sistema climático.”

Em resumo, é verdade que o vapor d’água é, de certo modo, o maior gás de efeito estufa envolvido na mudança climática, mas não está no controle. O CO2 ainda é o principal culpado pelo aquecimento global que estamos experimentando hoje. O vapor d’água é apenas uma das características do nosso clima que nossas emissões de CO2 estão desequilibrando—muito além dos níveis estáveis que a humanidade desfrutou por milhares de anos.

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license (CC BY-NC-SA 4.0)

Veja o texto original aqui.

Notas de rodapé

1 NASA Global Climate Change: “Steamy Relationships: How Atmospheric Water Vapor Amplifies Earth’s Greenhouse Effect.” February 8, 2022.

2 Song, Chunshan, et al., “Tri-reforming of Methane over Ni Catalysts for CO2 Conversion to Syngas With Desired H2/CO Ratios Using Flue Gas of Power Plants Without CO2 Separation.” Studies in Surface Science and Catalysis, Volume 153, 2004, doi:10.1016/S0167-2991(04)80270-2.

O esquecido gás de efeito estufa

N2O – um potente gás de efeito estufa

Em um ambiente político carbocêntrico, o monóxido de dinitrogênio (N2O) é quase o gás de efeito estufa esquecido. Volumes enormes são liberados na atmosfera naturalmente a partir dos solos e dos oceanos. Sendo responsável por cerca de dois terços da concentração atmosférica – agricultura, combustão e a indústria química, entre eles respondem pelo outro terço. Especificamente, a produção em grande escala de ácido adípico e vários outros produtos químicos finos é responsável por um volume significativo do fluxo total de N2O.

O N2O tem uma vida útil atmosférica de cerca de 114 anos e um potencial de aquecimento global (GWP) de 298 (dado um horizonte de tempo de um século). O GWP para CO2 é apenas 1, o que torna o N2O um potente gás de efeito estufa. Os  níveis de N2O estão bem acima de 319 partes por bilhão em volume, em comparação com os níveis pré-industriais de 285 ppbv (aumento de 9–10%). O N2O não é o principal contribuinte para o aquecimento global; no entanto, é um dos seis gases, incluindo CO2, hexafluoreto de metano e enxofre, hidrofluorocarbonos e perfluorocarbonos, que o Quadro das Nações Unidas sobre Mudança do Clima reservou para reduções substanciais na tentativa de evitar os piores efeitos sobre o aquecimento global e as mudanças climáticas. 

Prevenindo a liberação de N2O

Das fontes antropogênicas, talvez as duas soluções mais diretas para o problema seriam evitar a liberação do gás da urina do gado e extraí-lo das saídas gasosas das fábricas de produtos químicos. Testes preliminares foram realizados usando madeira verde, biochar, adicionada a pastagens para adsorver N2O da urina de gado, e para separar o N2O do gás residual industrial, que também contém dióxido de carbono, está sendo difícil.

A DuPont adotou os líquidos iônicos à temperatura ambiente (RTILs) como um solvente verde para a extração de N2O de gases residuais. O processo é particularmente adequado para o fluxo de resíduos da produção de ácido adípico, uma vez que o N2O pode ser reciclado de volta na matéria-prima para aumentar o rendimento geral e, ao mesmo tempo, evitar a necessidade de liberar esse gás para a atmosfera. O N2O também é usado como agente oxidante para converter benzeno em fenol, portanto, também pode ser usado dessa forma. 

Filtrando o N2O do CO2

Mark Shiflett e colegas do departamento de Pesquisa e Desenvolvimento Central da empresa em Wilmington, Delaware, EUA, explicam como modelaram a mistura de N2O/CO2 tetrafluoroborato de 1-butil-3-metilimidazólio ([bmim] [BF4]) com a separação em mente. [bmim] [BF4] é bem conhecido como um RTIL arquetípico, uma substância iônica em que a energia de cristalização é muito alta para ser um sólido à temperatura ambiente. Como tal, é um líquido e pode atuar como solvente para uma ampla gama de substâncias para as quais não estão disponíveis solventes orgânicos voláteis potentes (VOCs). Os RTILs também têm várias vantagens importantes sobre os VOCs, pois têm volatilidade limitada, são amplamente não tóxicos, não queimam e podem ser liberados de seus solutos muito mais rapidamente do que os VOCs.

O modelo da equipe para equilíbrio do sistema de separação mostra que ele é válido em uma faixa de temperatura de 296 a 315 K e os testes iniciais mostram que, para grandes e pequenas proporção de N2O / CO2, os dois podem ser separados de forma bastante eficaz . A concentração real de RTIL parece fazer pouca diferença na seletividade final da separação, mas, sem ela, não há maneira prática de separar os dois gases. Os pesquisadores apontam que esses estudos preliminares podem abrir caminho para uma separação industrial eficaz desses dois gases importantes, embora ainda não tenham identificado o RTIL específico que seria mais eficaz em um processo em escala industrial.

“Shiflett é um dos líderes mundiais no estudo de solubilidades de gases em líquidos iônicos”, disse Ken Seddon, Diretor do Centro de Pesquisa QUILL na Irlanda do Norte à ChemViews, “Este estudo estende seu trabalho ao N2O e embora a instabilidade hidrolítica do ânion tetrafluoroborato impedirá sua aplicação em escala industrial, está claro agora o que precisa ser feito para criar um sistema prático. “

Texto traduzido por Prof. Dr. Luís Roberto Brudna Holzle ( luisholzle@unipampa.edu.br ). A tradução do original ‘The Forgotten Greenhouse Gasfoi gentilmente autorizada pelos detentores dos direitos (Wiley-VCH GmbH – ChemistryViews.org).

Content translated with permission, but portuguese text not reviewed by the original author. Please do not distribute beyond this site without permission. Conteúdo traduzido com permissão, mas o texto em português não foi revisado pelo autor do original. Por favor, não distribua o conteúdo sem permissão.

  • DOI: 10.1002/chemv.201000067
  • Autor: David Bradley
  • Data de publicação: 31 Março 2011
  • Fonte/ Editora: Journal of Physical Chemistry B/ACS Publications
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA

Separando gases com grafeno

Remoção de CO2 de misturas de gases é importante para a captura de carbono para reduzir o impacto ambiental dos processos de combustão. O grafeno de camada única tem tamanhos de poros definidos na faixa nanométrica e foi sugerido como um material para separação de gases. No entanto, seus poros são geralmente muito grandes (cerca de 10 Å) para remover com eficiência gases comuns, cujas moléculas têm diâmetros cinéticos entre 2,5 e 4,0 Å.

Sheng Dai, do Laboratório Nacional de Oak Ridge, Oak Ridge, e Universidade de Tennessee, Knoxville, ambos TN, EUA, De-en Jiang, Universidade da Califórnia, Riverside, CA, EUA, e colegas propõem uma membrana de grafeno porosa, revestida com um líquido iônico, que pode separar seletivamente gases como CO2 e CH4. A equipe usou simulações de dinâmica molecular (MD) para estudar um sistema composto de grafeno poroso e o líquido iônico [emim] [BF4] (tetrafluoroborato de 1-etil-3-metilimidazólio). Eles simularam duas câmaras separadas pela membrana revestida ou um grafeno de referência não revestido e compararam a permeação de gás resultante para CO2, N2 e CH4.

A equipe descobriu que todos os três gases passam pelo grafeno não revestido em quantidades aproximadamente iguais. A membrana revestida com líquido iônico, em contraste, era altamente seletiva para permeação de CO2 e dificultava a passagem de CH4, resultando em uma razão de seletividade CO2/CH4 de aproximadamente 42. O efeito é atribuído ao tamanho de poro reduzido causado pela camada de líquido iônico e a maior afinidade de adsorção de CO2 no líquido iônico em comparação com outros gases. De acordo com os pesquisadores, materiais híbridos de grafeno/líquido iônico com tamanhos de poros ajustáveis ​​podem ser promissores para a separação seletiva de gases.

Texto traduzido por Prof. Dr. Luís Roberto Brudna Holzle ( luisholzle@unipampa.edu.br ). A tradução do original ‘Separating Gases with Graphene foi gentilmente autorizada pelos detentores dos direitos (Wiley-VCH GmbH – ChemistryViews.org).

Content translated with permission, but portuguese text not reviewed by the original author. Please do not distribute beyond this site without permission. Conteúdo traduzido com permissão, mas o texto em português não foi revisado pelo autor do original. Por favor, não distribua o conteúdo sem permissão.

  • Autor: ChemistryViews.org
  • Publicado: 02 março 2017
  • Direito autoral: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Fonte/Editor: Nano Letters/ACS Publications

Dica:

Um Nobel pelo grafeno

Novo estudo sugere que os oceanos estão perdendo a capacidade de absorver dióxido de carbono

Uma nova pesquisa publicada online em julho de 2011 sugere que as mudanças climáticas causadas pelo homem estão diminuindo a capacidade do oceano de ‘retirar’ CO2 da atmosfera.

Plantas, árvores e o solo absorvem carbono da atmosfera, mas o oceano é o maior ‘sumidouro de carbono’ do mundo e, desde a revolução industrial, o oceano provavelmente absorveu entre um terço e metade de todas as emissões de CO2 causadas pelo homem.

A remoção do CO2, produzido pelos homens, da atmosfera pela água do mar é claramente um processo importante. No entanto, os pesquisadores agora sugerem que a capacidade do oceano de absorver o CO2 atmosférico pode estar diminuindo. É uma combinação dos níveis de CO2 atmosférico e da química da água do mar que determina quanto CO2 a água do mar pode reter, e a água mais quente não pode reter tanto CO2 dissolvido quanto a água fria.

Os pesquisadores analisaram os dados existentes de CO2 e temperatura para o Oceano Atlântico Norte nas últimas três décadas. Seus resultados mostraram que, para uma grande seção do Atlântico Norte, menos CO2 foi capaz de se dissolver conforme a temperatura da superfície da água do mar aumentou. Isso está de acordo com pesquisas anteriores conduzidas em outros oceanos, como o Oceano Antártico e o Mar do Japão, que também estão absorvendo menos CO2 como resultado das mudanças climáticas causadas pelo homem.

Ao considerar a mesma questão, estudos anteriores no Atlântico Norte chegaram a conclusões conflitantes. Os autores deste novo estudo sugerem que isso se deve a um alto grau de variabilidade natural que pode mascarar tendências de longo prazo.

O professor McKinley, autor do estudo, diz:

“Como o oceano é muito variável, precisamos de pelo menos 25 anos de dados para realmente ver o efeito do acúmulo de carbono na atmosfera. Este é um grande problema em muitos ramos da ciência do clima – o que é variabilidade natural e o que é mudança climática? ”

Este novo estudo considera quase trinta anos de dados, o que a equipe acredita ser o suficiente para determinar uma tendência real. Suas descobertas têm grandes implicações sobre a quantidade de CO2 que será absorvido pelos oceanos no futuro, devido ao aumento de temperatura projetado associado às emissões de gases de efeito estufa causadas pelo homem. McKinley diz:

“… Esta é uma das primeiras evidências de que o clima está prejudicando a capacidade do oceano de retirar carbono da atmosfera.”

McKinley enfatiza a necessidade desse tipo de análise em outros oceanos para que as tendências de captação de CO2 dos oceanos possam continuar a ser refinadas. Mas os resultados do estudo demonstram que, em um planeta em aquecimento, os sumidouros naturais de carbono não podem ser considerados óbvios.


Texto traduzido por Prof. Dr. Luís Roberto Brudna Holzle (luisholzle@unipampa.edu.br) – Universidade Federal do Pampa (Bagé) – Curso Química Licenciatura.

Texto original em: New study suggests oceans are losing the ability to absorb carbon dioxide

Vídeo: Visualizando as emissões de metano conforme elas acontecem

Os pesquisadores desenvolveram uma técnica para filmar o metano – um poderoso gás de efeito estufa – conforme ele é liberado na atmosfera. A abordagem usa imagens infravermelhas, transformando algo que geralmente está além da capacidade do olho humano em clipes de vídeo onde o metano é facilmente visualizado.

Autor: Robert Mcsweeney

A nova abordagem pode ajudar a superar alguns dos desafios das formas tradicionais de monitoramento das emissões de metano, dizem os pesquisadores.

Você pode ver a técnica em ação no clipe (ligeiramente granulado) abaixo. As cores roxa e verde mostram metano escapando de uma abertura na lateral de um celeiro. O celeiro em questão está abrigando 18 produtores individuais prolíficos de metano – também conhecido como um pequeno rebanho de vacas.

Visualização das emissões de metano (mostradas em roxo e verde) da ventilação no celeiro das vacas. Fonte: Gålfalk et al. (2015)

Com cerca de 25 vezes o poder de aprisionamento de calor do dióxido de carbono, o metano é um gás de efeito estufa que tem uma grande força. É produzido e emitido para a atmosfera por uma série de fontes naturais, como pântanos, bem como por atividades humanas, incluindo a queima de combustíveis fósseis, aterros sanitários, arrozais e criação de gado.

Os métodos de medição das emissões de metano vão desde a pequena escala – usando câmaras de metano – até os satélites. Ambos têm suas desvantagens. As câmaras de metano são pequenas caixas colocadas no solo para medir quanto metano está sendo liberado. Mas eles cobrem apenas uma pequena área (até um metro quadrado, por exemplo), então os cientistas precisam fazer muitas medições para analisar uma paisagem inteira. As medições de satélite podem cobrir grandes áreas, mas não podem identificar pontos específicos de onde o metano está vindo.

Os cientistas também começaram a usar drones para medir as emissões de metano, como você pode assistir neste clipe da BBC News que mostra um aterro sanitário.

A técnica de imagem, descrita em um artigo na Nature Climate Change, abre uma nova oportunidade para superar algumas dessas limitações. O autor principal, Dr. Magnus Gålfalk, professor sênior da Linköping University na Suécia, disse ao Carbon Brief:

  • É uma maneira eficiente de localizar fontes de emissão de metano, já que uma região inteira é fotografada ao mesmo tempo, com alta resolução espacial.

As medições podem ser feitas do solo ou de várias centenas de metros no ar usando um helicóptero, diz o artigo científico.

Entender exatamente como o metano sai de onde é produzido para a atmosfera é crucial para ser capaz de modelá-lo com precisão em simulações de computador, diz o Dr. Vincent Gauci, professor sênior em sistemas terrestres e ciência de ecossistemas na Open University. Ele disse ao Carbon Brief:

  • É vital que entendamos as fontes de metano e como essas fontes respondem às mudanças.

Gauci não estava envolvido no estudo, mas como ele lidera a Methane Network em nome do Conselho de Recursos Ambientais Naturais, ele está muito animado com as possibilidades oferecidas pelo registro do metano em imagens.

  • Criticamente, mais do que apenas ver, eles são capazes de quantificar, o que é muito legal.

O vídeo abaixo mostra outra visualização das emissões de metano – desta vez simplesmente de uma liberação controlada de gás na frente do laboratório dos pesquisadores.

Visualização da liberação controlada de metano (mostrado em roxo) no gramado fora do laboratório. Fonte: Gålfalk et al. (2015)

Gålfalk, M. et al. (2015) Tornando o metano visível, Nature Climate Change, doi: 10.1038 / nclimate2877

Texto traduzido por Prof. Dr. Luís Roberto Brudna Holzle – Universidade Federal do Pampa (Bagé) – Curso Química Licenciatura.

Texto original em: Video: Visualising methane emissions as they happen

Catalisador aprimorado para eletro-redução de CO2

A reação eletrocatalítica de redução de dióxido de carbono (CO2RR) pode ser usada para transformar o gás de efeito estufa CO2 em (C2+) combustíveis multicarbono úteis e matérias-primas químicas, por exemplo, etileno ou etanol. No entanto, é um desafio a produção seletiva desses produtos desejados em altos níveis de corrente. Eletrocatalisadores baseados em cobre ou suas ligas geralmente fornecem seletividade moderada, mas têm problemas com sua estabilidade a longo prazo, especialmente em eletrólitos altamente alcalinos.

Hongjie Dai, Universidade de Stanford, CA, EUA, e colegas desenvolveram um eletrocatalisador simples de  cobre (Cu) eletrodepositado em uma camada de difusão de gás porosa hidrofóbica (GDL), que pode ser usado para a redução estável e seletiva de dióxido de carbono para produtos C2+ em eletrólitos quase neutros. A equipe usou um GDL que consiste em uma camada de fibra de carbono e uma camada microporosa hidrofóbica. A camada de fibra de carbono foi temporariamente coberta e o cobre eletrodepositado na lateral da camada microporosa hidrofóbica.O gás CO2 pode ser transportado com eficiência através das camadas de carbono em direção à camada de cobre cataliticamente ativa. A equipe construiu uma célula de fluxo de dois eletrodos usando um cátodo Cu/GDL em um católito KCl e um ânodo à base de hidróxidos de níquel-ferro em um anólito KOH. Eles descobriram que o sistema fornece excelente seletividade para a formação de produtos C2+, bem como operação estável em altas densidades de corrente.

exto traduzido por Prof. Dr. Luís Roberto Brudna Holzle ( luisholzle@unipampa.edu.br ). A tradução do original ‘Improved Catalyst for CO2 Electro-Reduction’ foi gentilmente autorizada pelos detentores dos direitos (Wiley-VCH GmbH – ChemistryViews.org).

Content translated with permission, but portuguese text not reviewed by the original author. Please do not distribute beyond this site without permission. Conteúdo traduzido com permissão, mas o texto em português não foi revisado pelo autor do original. Por favor, não distribua o conteúdo sem permissão.

  • Autor: ChemistryViews.org
  • Publicado: 28 fevereiro 2021
  • Direito autoral: Wiley-VCH GmbH
  • Sociedades associadas: American Chemical Society (ACS), USA

Dica:

Dióxido de carbono – reação e aquecimento global